АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Уравнение линейной регрессии

Читайте также:
  1. Анализ вариации (дисперсии) зависимой переменной в регрессии.
  2. Балансовое уравнение Центрального банка
  3. В общем случае волновое уравнение записывается в виде
  4. ВТОРОЙ ЗАКОН НЬЮТОНА. УРАВНЕНИЕ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ
  5. Вынужденная и естественная конвекция. Факторы, влияющие на интенсивность конвективного теплообмена. Уравнение Ньютона для конвективной теплоотдачи.
  6. Геометрический смысл производной и уравнение касательной
  7. Геометрическое изображение линейной функции
  8. Графическое нахождение наибольшего и наименьшего значений линейной функции в области
  9. Графическое представление уравнения парной линейной регрессии
  10. Дифференциальное уравнение адиабатного процесса (адиабаты) можно представить в следующем виде
  11. Дифференциальное уравнение массоотдачи (конвективной диффузии)
  12. ДИФФУЗИЯ. ОСНОВНОЙ ЗАКОН ДИФФУЗИИ. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ДИФФУЗИИ.

 

Обычно признак Y рассматривается как функция многих аргументов — x1, x2, x3,...— и может быть записана в виде:

 

y = a + bx1 + cx2 + dx3 +...,

 

где: а, b, с и d — параметры уравнения, определяющие соотношение между аргументами и функцией. В практике учитываются не все, а лишь некоторые аргументы, в простейшем случае, как при описании линейной регрессии, — всего один:

 

y = a + bx (2.1)

 

В этом уравнении параметр а — свободный член; графически он представляет отрезок ординаты (у) в системе прямоугольных координат. Параметр b называется коэффициентом регрессии. С точки зрения аналитической геометрии b— угловой коэффициент, определяющий наклон линии регрессии по отношению к осям, координат. В области регрессионного анализа этот параметр показывает, насколько в среднем величина одного признака (Y) изменяется при изменении на единицу меры другого корреляционно связанного с Y признака X. Наглядное представление об этом параметре и о положении линий регрессии Y по Х и X по Y в системе прямоугольных координат дает рисунок 2.1.

 


Рис. 2.1. Схема линий регрессии Y по Х и Х по Y в системе прямоугольных координат.

 

Линии регрессии, как показано, пересекаются в точке 0 (), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаков Y и X. Линия АВ, проходящая через эту точку, изображает полную (функциональную) зависимость между переменными вели-чинами Y и X, когда коэффициент корреляции r = 1.

Чем сильнее связь между Y и X, тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между варьирующими признаками, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками, когда r = 0, линии регрессии оказываются под прямым углом (90°) по отношению друг к другу.

Уравнение регрессии тем лучше описывает зависимость, чем меньше рассеяние диаграммы, чем больше теснота взаимосвязи. Уравнение прямой линии пригодно для описания только линейных зависимостей. В случае не-линейных зависимостей математическая запись может отображаться уравнениями параболы, гиперболы и др.

Необходимо также сделать одно важное замечание о значении показателей, характеризующих взаимосвязь признаков (коэффициентов корреляции, регрессии и т. п.). Все они дают лишь количественную меру связи, но ничего не говорят о причинах зависимости. Определить эти причины — дело самого исследователя.

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)