АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Состав и функции крови

Читайте также:
  1. I. Понятие о завещании и его составление (форма)
  2. I. Прокурор: понятие, положение, функции и профессиональные задачи.
  3. I. Функции окончания «-s»
  4. I. Функции окончания «-s»
  5. II. Недвижимое и движимое имущество. Составная часть и принадлежность
  6. II. Работа с лексическим составом языка
  7. II. Составные части, возмещение, ремонт, накопление основного капитала
  8. III Участники игры и их функции
  9. III. Изучение геологического строения месторождений и вещественного состава руд
  10. III. Методы оценки функции почек
  11. III. Полномочия и функции территориального фонда
  12. III. Товарищества неторговые, земские, крестьянские и с переменным составом

Биохимия крови. Плазма крови. Метаболизм эритроцитов.

Тема: «БИОХИМИЯ КРОВИ. ПЛАЗМА КРОВИ: КОМПОНЕНТЫ И ИХ ФУНКЦИИ. МЕТАБОЛИЗМ ЭРИТРОЦИТОВ. ЗНАЧЕНИЕ БИОХИМИЧЕСКОГО АНАЛИЗА КРОВИ В КЛИНИКЕ»


1. Белки плазмы крови: биологическая роль. Содержание белковых фракций в плазме. Изменения белкового состава плазмы при патологических состояниях (гиперпротеинемия, гипопротеинемия, диспротеинемия, парапротеинемия).
2. Белки острой фазы воспаления: биологическая роль, примеры белков.
3. Липопротеиновые фракции плазмы крови: особенности состава, роль в организме.
4. Иммуноглобулины плазмы крови: основные классы, схема строения, биологические функции. Интерфероны: биологическая роль, механизм действия (схема).
5. Ферменты плазмы крови (секреторные, экскреторные, индикаторные): диагностическое значение исследования активности аминотрансфераз (АЛТ и АСТ), щелочной фосфатазы, амилазы, липазы, трипсина, изоферментов лактатдегидрогеназы, креатинкиназы.
6. Небелковые азотсодержащие компоненты крови (мочевина, аминокислоты, мочевая кислота, креатинин, индикан, прямой и непрямой билирубин): строение, биологическая роль, диагностическое значение их определения в крови. Понятие об азотемии.
7. Безазотистые органические компоненты крови (глюкоза, холестерол, свободные жирные кислоты, кетоновые тела, пируват, лактат), диагностическое значение их определения в крови.
8. Особенности строения и функции гемоглобина. Регуляторы сродства гемоглобина к О2. Молекулярные формы гемоглобина. Производные гемоглобина. Клинико-диагностическое значение определения гемоглобина в крови.
9. Метаболизм эритроцита: роль гликолиза и пентозофосфатного пути в зрелых эритроцитах. Глутатион: роль в эритроцитах. Ферментные системы, участвующие в обезвреживании активных форм кислорода.
10. Свёртывание крови как каскад активации проферментов. Внутренний и внешний пути свёртывания. Общий путь свёртывания крови: активация протромбина, превращение фибриногена в фибрин, образование фибрина-полимера.
11. Участие витамина К в посттрансляционной модификации факторов свёртывания крови. Дикумарол как антивитамин К.

Состав и функции крови.

Кровь - жидкая подвижная ткань, циркулирующая в замкнутой системе кровеносных сосудов, транспортирующая различные химические вещества к органам и тканям, и осуществляющая интеграцию метаболических процессов, протекающих в различных клетках.

Кровь состоит из плазмы и форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Сыворотка крови отличается от плазмы отсутствием фибриногена. 90% плазмы крови составляет вода, 10% - сухой остаток, в состав которого входят белки, небелковые азотистые компоненты (остаточный азот), безазотистые органические компоненты и минеральные вещества.

 

Эритроциты:
1. Зрелые эритроциты лишены ядра, поэтому в клетке не синтезируются белки. Эритроцит почти целиком заполнен гемоглобином.
2. Эритроциты не имеют митохондрий, поэтому в клетке не протекают реакции ЦТК, ЦТД, β-окисления жирных кислот.
3. Основной путь получения энергии – гликолиз, 90% глюкозы в эритроцитах распадается в процессе анаэробного гликолиза.
4. Энергия, поставляемая гликолизом, обеспечивает поддержание целостности плазматической мембраны и работу Na+, K+-АТФазы.
5. Особенностью гликолиза в эритроцитах является наличие шунта, приводящего к образованию 2,3-дифосфоглицерата – одного из регуляторов переноса кислорода. При связывании его с гемоглобином уменьшается сродство гемоглобина к кислороду и облегчается освобождение кислорода из эритроцитов в тканях.
Реакция образования 2,3-дифосфоглицерата, отсутствующая в «классическом» гликолизе, называется шунт Раппопорта.
6. 10 % глюкозы распадается в эритроците в пентозофосфатном пути. Образующийся при этом НАДФН обеспечивает восстановление глутатиона и поддерживает его оптимальную концентрацию. Восстановленный глутатион необходим для поддержания в восстановленной форме SH-групп белков; препятствует окислению гемоглобина; предотвращает перекисное окисление липидов мембран. При снижении концентрации восстановленного глутатиона эритроцит быстро «стареет».

Лейкоциты:
1. Лейкоциты являются полноценными клетками с большим ядром, митохондриями и высоким содержанием нуклеиновых кислот.
2. В лейкоцитах активно протекают процессы биосинтеза нуклеиновых кислот и белков.
3. Основной путь получения энергии – аэробный гликолиз. АТФ образуется также в реакциях β-окисления жирных кислот.
4. В лейкоцитах сосредоточен весь гликоген крови, который является источником энергии при недостаточном её поступлении.
5. В лизосомах лейкоцитов локализована мощная система протеолитических ферментов – протеазы, фосфатазы, эстеразы, ДНК-азы, РНК-азы, что обеспечивает участие этих клеток в защитных реакциях организма. В результате действия этих ферментов разрушаются полимерные молекулы микроорганизмов и образуются мономеры (моносахариды, аминокислоты, нуклеотиды), которые поступают в цитозоль и могут использоваться клеткой.
6. Поглощение бактерий лейкоцитами в процессе фагоцитоза сопровождаются резким увеличением потребления кислорода с образованием супероксидного аниона и пероксида водорода (см. лекцию № 11), которые оказывают бактерицидное действие. Это явление называется «распираторным взрывом».

Лимфоциты.
Продуцируются в лимфатической ткани. Интенсивный синтез белков и γ-глобулинов в этих клетках обуславливает важную роль лимфоцитов в иммунных процессах (образование антител).

Тромбоциты – кровяные пластинки.
1. Тромбоциты не могут считаться полноценными клетками, поскольку не содержат ядра.
2. В тромбоцитах протекают основные биохимические процессы: синтез белка, реакции обмена углеводов и липидов, окислительное фосфорилирование.
3. Основная функция тромбоцитов – участие в процессе свертывания кровиобусловлена наличием тромбоцитарных факторов свертывания.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)