|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Виды и формы связей между явлениямиВиды и формы связей между явлениями в статистических исследованиях. Связи между явлениями и их признаками бывают разные. Они отличаются по характеру, направлению, плотностью, аналитическим выражением, числом взаимодействующих факторов и др.. В философской литературе отмечается, что существует около 32 видов различных взаимосвязей. По характеру зависимости между явлениями есть два вида связи: 1) функциональный (полный) связь; 2) корреляционный (неполный) связь.
При функциональной связи полное соответствие между причиной (факторной признаку) и следствием (результативным признаком), т.е. величина результативного признака полностью определяется одним или несколькими факторными признаками. Функциональная связь часто встречается в естественных науках: математике, физике, астрономии и т.д.. Он выражается точной математической формуле, которая может быть использована в любом случае для явления, которое рассматривается. Так площадь круга (результативный признак) прямо пропорциональна радиусу (факторной признаку) и выражается формулой S = рR2, а связь между длиной окружности и радиусом - формулой l = 2рR. Примерами функциональной зависимости результативного признака от нескольких факторных признаков могут быть: зависимость тока от напряжения и сопротивления, зависимость площади треугольника от величины его сторон. Функциональная зависимость проявляется с одинаковой силой во всех единицах совокупности независимо от изменения других признаков данного явления. Так, установлена зависимость площади круга от квадрата радиуса будет проявляться везде: и при вычислении площади круга диска для метания в спортивных соревнованиях, и при характеристике площади круга площади города или села и проч. Итак, если установлена функциональная зависимость на базе единичного исследования, то ею можно пользоваться во всех аналогичных случаях. Функциональная зависимость имеет место и в общественных явлениях, но очень редко, и эти связи единичные, отражающие взаимосвязь только отдельных сторон явлений. Например, таким связь тарифной заработной платы и отработанного работником рабочего времени и т.п.. В правовых явлениях функциональная зависимость, как правило, не встречается. При корреляционной связи между причиной и следствием не имеет полного соответствия, а наблюдается лишь определенное соотношение. Под влиянием изменения многих факторных признаков (некоторые из которых могут быть неизвестны) меняется средняя величина результативного признака. Наибольшее распространение корреляционные связи имеют среди общественных явлений. Так, между уровнем производительности труда и энергооснащения труда на предприятиях одинаковой специализации определенное соответствие, если иметь в виду значительное количество случаев. Но на уровень производительности труда влияют и такие факторы, как режим работы на предприятии, организация снабжения, личные качества производственного персонала и др.. Поэтому может быть так, что на предприятии, где выше энерговооруженность, производительность труда может быть ниже, и наоборот. Это означает, что на уровень производительности труда существенно влияли другие факторы. Но если взять достаточно большое количество предприятий, то зависимость между производительностью и энерговооруженностью труда станет четкой. Корреляционная зависимость существует между производительностью труда и себестоимостью продукции - с ростом производительности труда снижается себестоимость продукции. Или возьмем обратную зависимость между преступностью и образованием лиц, совершивших преступления. Такая зависимость есть, но на уровень преступности в разных направлениях действует много других факторов (употребление алкоголя, моральные качества личности, материально-бытовые условия и т.д.). Поэтому в каждом конкретном случае зависимость между образованием и преступностью может не проявиться и для выявления такой неполной зависимости надо взять большое количество явлений, которые следует рассматривать в совокупности. Подобным образом можно изучать и зависимость между преступностью и рецидивом, между преступностью и удельным весом лиц, совершивших преступления в составе группы по отдельным видам преступлений. В гражданско-правовой статистике можно изучать: зависимость между ростом жилищного строительства и снижением количества судебных дел соответствующей категории (дел, которые возникали на почве семейно-бытовых конфликтов) зависимость между количеством разводов на 10 тысяч населения и условиями жизни населения, между количеством заключенных браков на 10 тысяч населения и социально-демографическим показателям всего населения и т.п.. Итак, наличие многих факторных признаков, степень влияния которых на результативный признак неизвестен, выступает как одна из характерных особенностей корреляционных связей. Корреляционная связь между результативным признаком и единицей из определенного количества факторных признаков может проявиться лишь в общем, в среднем, при прочих равных условиях. Влияние факторов, которые не являются объектом исследования, устраняется путем замены их средними показателями. Согласно закону больших чисел это достигается на основании взаимопогашение отклонений признаков определенных единиц в той или другую сторону от средней при достаточно большом количестве единиц, которые изучаются. Чем больше статистическая совокупность, тем точнее устанавливаемое соотношение выражает закономерность корреляционных связей. Следует обращать внимание и на то, что в сложных взаимоотношениях может находиться и результативный фактор - в более общем виде он может выступать как фактор изменения других признаков. Это требует того, что результаты корреляционного анализа имеют значение для данного вида связи, а интерпретация этих результатов требует построения системы корреляционных связей в более общем виде. Но и на массовом статистическом материале выявлены зависимости не будут носить полного, функционального характера. Они в определенной мере приближаться к функциональной связи, но действие других факторов, которые не учтены исследованиям, приводит к тому, что корреляционная связь будет неполный. Из этого следует, что корреляционная связь не выражается определенной математической формулой, он может быть выражен примерно с помощью аналитических формул. По направлению связи между явлениями различают связи прямые и обратные. Если с увеличением факторного признака есть тенденция к росту индивидуальных и средних значений результативного признака, то это будет прямая связь. Если с увеличением факторного признака результативный признак уменьшается или, наоборот, с уменьшением факторного признака результативный признак возрастает, то это обратная связь. Например, между пьянством и преступностью есть прямая зависимость, а между образованием и преступностью - обратная. По количеству взаимодействующих факторов связи могут быть однофакторные и многофакторные. Однофакторные связи - это такие, при которых одна результативная признак связан с одной факторной признаку. Такая связь называют парным. Многофакторные связи - это такие, при которых одна результативная признак связан с двумя или факторных признаков. В общественных явлениях чаще встречаются многофакторные связи. Так, на решение расторгнуть брак влияют многие факторы, на осуществление автотранспортного преступления влияют разные факторы: природные условия, состояние дороги, состояние транспортных средств, квалификация водителя, соблюдение правил дорожного движения водителями и другими участниками движения и т.п.. По аналитическим выражением различают: прямолинейные (линейные) и криволинейные (нелинейные) связи. При прямолинейном связи с ростом факторного признака происходит равномерный рост (или уменьшение) результативного признака. Математически такая связь сказывается уравнением прямой ух = а0 + а1х, а графически - прямой линией. Поэтому такая связь и называют линейным. При криволинейном связи с ростом факторной признаки роста (или снижения) результативного признака происходит неравномерно, или направление связи меняется с прямого на обратный. Геометрически такая связь сказывается кривыми линиями (гиперболой, параболой и т.д.). При этом следует иметь в виду, что только функциональная связь аналитическим уравнением выражается точно, а корреляционная связь - лишь приблизительно, при абстрагирование от влияния всех других признаков. Поэтому на графике будет иметь место разброс точек вокруг линии. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |