|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
УЧЕБНОЕ ПОСОБИЕФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования Московский технический университет связи и информатики КАФЕДРА ЭЛЕКТРОНИКИ Власов В.П., Каравашкина В.Н. ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ УЧЕБНОЕ ПОСОБИЕ Москва 2015
1. ОБЩАЯ ХАРАКТЕРИСТИКА ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ 1.1. Электрические свойства веществ 1.2. Электрические заряды в полупроводниках 1.3. Энергетические диаграммы 1.4. Электропроводность полупроводников 1.5. Токи в полупроводниках 1.6. Особенности примесных полупроводников 1.7. Расчёт концентрации подвижных носителей заряда 2. ОБЩИЕ СВОЙСТВА КОНТАКТОВ ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ 2.1. Контакты и структуры в электронике 2.2. Контактная разность потенциалов 2.3. Собственные токи в контактах 2.4. Электроёмкость контактов 2.5. Электрический и тепловой пробой в контактах. 3. КОНТАКТ МЕТАЛЛ – ПОЛУПРОВОДНИК. ДИОДЫ ШОТКИ 3.1. Основные свойства металло-полупроводниковых контактов 3.2. Диоды Шотки 4. КОНТАКТ ПОЛУПРОВОДНИКОВ Р- И N-ТИПА 4.1. Основные свойства p-n перехода 4.2. Основные числовые характеристики p-n перехода 4.3 Вольт-амперная характеристика p-n перехода 5. ДИОДЫ НА ОСНОВЕ M-N, P-N ПЕРЕХОДОВ И P-I-N СТРУКТУРЫ 5.1. Мощный выпрямительный диод 5.2. Импульсные и высокочастотные диоды 5.3. Стабилитрон 5.4. Варикап 5.5. Диоды на основе p-i-n структуры 5.6. Свето- и фото-диоды. Солнечные батареи 6. СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК. МДП- ТРАНЗИСТОР 6.1. Основные свойства МДП-структуры 6.2 МДП-транзистор с индуцированным каналом 6.3. Основные параметры МДП-транзистора 6.4. Статические характеристики МДП-транзистора 6.5. МДП-транзистор с плавающим затвором 6.6. Арсенид-галлиевый полевой транзистор 7. N-P-N И P-N-P СТРУКТУРЫ. БИПОЛЯРНЫЙ ТРАНЗИСТОР 7.1. Основные свойства биполярного транзистора 7.2. Биполярный транзистор в схеме с общей базой 7.3. Биполярный транзистор в схеме с общим эмиттером 7.4. Статические характеристики биполярного транзистора 8. ИНЕРЦИОННЫЕ СВОЙСТВА МДП И БИПОЛЯРНЫХ ТРАНЗИСТОРОВ 8.1. Причины инерционности МДП и биполярных транзисторов 8.2. Импульсные свойства МДП и биполярных транзисторов 8.3. Частотные свойства МДП и биполярных транзисторов 9. IGBT – ТРАНЗИСТОР 10. КОНТАКТ ПРОВОДНИК - ВАКУУМ. ЭЛЕКТРОННЫЕ ЛАМПЫ 11. КОМПЬЮТЕРНЫЕ МОДЕЛИ ЭЛЕКТРОННЫХ ЭЛЕМЕНТОВ 11.1. Компьютерная модель диода 11.2. Компьютерная модель транзистора 12. ШУМЫ ЭЛЕКТРОННЫХ ПРИБОРОВ 13. СПИСОК ЛИТЕРАТУРЫ
1. Общая характеристика веществ в электронике
1.1 Электрические свойства веществ. Полупроводники
Проводники содержат большое количество носителей заряда, способных перемещаться под действием электрического поля. Такие зарядыназывают подвижными, их направленное движение – электрическим током. Сила тока i определяется скоростью перемещения суммарного заряда подвижных носителей Q: i = dQ/dt. Способность вещества пропускать ток называется электропроводностью. Электропроводность определяется, главным образом, плотностью концентрации, или просто концентрацией подвижных носителей – их количеством в единице объёма. Типичными проводниками являются металлы. Для них характерна высокая концентрация подвижных зарядов – свободных электронов. Диэлектрики практически не содержат подвижные заряды, их электропроводность ничтожна. Такими свойствами обладает большое число веществ. Полупроводники занимают промежуточное положение по электропроводности межу проводниками и диэлектриками. Типичным и самым распространённым в электронике полупроводником является кремний (Si). Широкое применение находят также некоторые соединения, например арсенид галлия (GaAs). Чистые, или собственные полупроводники содержат атомы только одного вида.Если в полупроводник при изготовлении намеренно введены примеси определённого вида в необходимой концентрации, то это примесный полупроводник. Полупроводники, как правило, используются в кристаллическом виде. В кристаллах атомы располагаются на строго определённых расстояниях друг от друга, в строго определённом взаимном расположении. Это гарантирует предсказуемость и повторяемость электрофизических свойств полупроводника, их однородность и следовательно, независимость от источника сырья, места, времени и условий изготовления. Кристаллическая решётка кремния условно изображена на рис. 1. Кружки здесь – атомы кремния, двойные линии между кружками – связи между атомами. Такие связи возникают благодаря валентности – способности атомов соединяться и удерживаться на определённом расстоянии друг от друга. Валентные связи обеспечиваются парами валентных электронов – электронов внешней, валентной орбиты (оболочки), по одному от каждого из связанных атомов атома. Именно внешними оболочками «соприкасаются» атомы при сближении и именно валентные электроны образуют связи с соседними атомами. Согласно рис. 1 каждый атом кристаллического кремния обладает четырьмя валентными электронами и связан с четырьмя соседними атомами, т.е. валентность кремния равна 4.
Рис. 1
На рис.1 кристаллическая решётка изображена в идеальном состоянии. Однако в реальности полупроводник не может быть абсолютно чистым и бездефектным. От посторонних примесей и дефектов тщательно избавляются при изготовлении кристаллов для электронных элементов.
1.2 Электрические заряды в полупроводниках Идеальное состояние решётки невозможно также при любой температуре, превышающей абсолютный нуль.При этом атомы и электроны хаотично колеблются относительно своих исходных положений, т.е. обладают некоторой тепловой энергией. Амплитуда и направление колебаний случайны и, вследствие обмена энергией при сближениях соседних атомов энергия хаотических тепловых колебаний электронов в некоторые моменты времени оказывается достаточной, чтобы они преодолели притяжение ядра и покинули атом. Такие электроны называются свободными или электронами проводимости, т.к. способны направленно двигаться под действием электрического поля. Свободными становятся, прежде всего, валентные электроны, наиболее удалённые от ядра и наименее с ним связанные. На месте валентного электрона, ставшего свободным, образуется так называемая дырка – микрообласть с зарядом +q*, в которой отсутствует валентный электрон. Заряд появляется здесь вследствие нарушения равенства суммарного заряда электронов атома и заряда его ядра. Процесс образования свободного электрона и дырки, или электронно-дырочной пары, называется генерацией, рис. 2а. Если генерация обусловлена теплом, то это термогенерация. Генерация может вызываться и другими видами энергии, например, световой при освещении полупроводника.
Рис. 2
Одновременно с генерацией происходит обратный процесс – рекомбинация. При этом перемещающийся по полупроводнику свободный электрон совпадает с дыркой, заполняет её и вновь становится валентным. Восстанавливается валентная связь и электрическая нейтральность данной микрообласти, свободный электрон и дырка исчезают, рис. 2б. В собственном полупроводнике генерация и рекомбинация свободных электронов и дырок происходит только парами, поэтому собственная концентрация свободных электронов ni и собственная концентрация дырок pi равны. Генерация происходит за счёт поглощения внешней энергии. Рекомбинация сопровождается её выделением, так как свободный электрон, превращаясь в валентный, теряет часть своей энергии. В частности, при рекомбинации полупроводник может светиться, что используется в светодиодах. Дырка, как и свободный электрон, считается подвижным носителем заряда. При перемещении дырка заполняется не свободным, а соседним валентным электроном. Валентный электрон при этом остаётся валентным, его энергия не изменяется. Дырка исчезает на прежнем месте и возникает на новом месте, т.е. перемещается. Хотя при этом фактически перемещаются валентные электроны, воспринимается это, как перемещение единичного положительного заряда. Таким образом, перемещение зарядов в полупроводнике, т.е. возникновение тока, вызывается независимым друг от друга движением свободных электронов и дырок. Поэтому ток в полупроводниках может иметь как электронную In, так и дырочную Ip составляющие. Движение дырки поясняет рис. 3.
* q – элементарный, или единичный электрический заряд, равный …. Кл. Заряд электрона равен –q, дырки +q.
Рис. 3
Наряду с подвижными зарядами важную роль имеют неподвижные заряды – ионизированные атомы веществ, чаще всего примесей. Ионами называют атомы, утратившие часть своих электронов (положительные ионы) или захватившие посторонние электроны (отрицательные ионы). Ионы в твёрдых веществах не способны перемещаться и создавать ток. Однако, как и любые другие электрические заряды, они способны создавать электрическое поле, влияющее на подвижные заряды.
1.3 Энергетические диаграммы
Энергетическая диаграмма – график с главной осью y, на которой откладываются значения энергии W электронов вещества, обычно в электрон-вольтах, (эВ). Ось x позволяет отобразить изменение энергии вдоль главной координаты, в направлении движения носителей заряда. На рис. 4 изображена энергетическая диаграмма собственного полупроводника для образца с длиной l. Заштрихованные области соответствуют возможным значениям энергии электронов (разрешённые зоны). Просветы между ними – запрещённые зоны. Электронов с энергиями в пределах запрещённых зон в веществе нет. Количество разрешённых и запрещенных зон в различных веществах различно. В проводниках запрещённых зон нет вообще, в диэлектриках верхняя запрещённая зона очень широкая. Для полупроводников в электронике наиболее важны три верхних зоны (рис. 4). Самая верхняя из них, зона проводимости, соответствует энергиям свободных электронов. Под ней располагается запрещённая зона, электронов в которой нет*. Нижняя разрешённая зона – валентная зона, соответствует энергиям валентных электронов. * Часто используемое выражение «электрон находится в зоне…» указывает не на место его расположения в пространстве, а на значение его энергии.
На энергетической диаграмме можно отобразить важные величины:
Wз – ширина запрещённой зоны; Wc – дно зоны проводимости; Wv – потолок валентной зоны.
Рис. 4
Энергетические диаграммы позволяют также графически отображать состояния и процессы в полупроводниках. Например, рис. 5 иллюстрирует генерацию и рекомбинацию в собственном полупроводнике.
Рис. 5 Очевидно, что для превращения валентного электрона в свободный электрон необходима энергия не меньше
Wз = Wc - Wv (1)
Очевидно, что чем шире запрещённая зона полупроводника, тем слабее термогенерация и меньше собственная концентрация. Такая же энергия выделяется при рекомбинации в виде тепла или света. Поэтому энергия кванта света hν при свечении полупроводника и, следовательно, цвет свечения определяются шириной запрещённой зоны:
hν = hc / λ = Wз, (2)
где h - постоянная Планка; ν, λ, c - частота, длина волны и скорость света. Отсюда разнообразие полупроводников в светодиодах и в пикселах светодиодных экранов.
1.4 Электропроводность полупроводников
В физике полупроводников вместо понятий ток I и напряжение U удобнее пользоваться понятиями плотность тока J [А/м2] и напряжённость поля E [В/м]. В этом случае закон Ома имеет вид:
J = E/ρ (3) или J = σE, (4)
где ρ – удельное сопротивление [Ом/м], σ – удельная проводимость [См/м]. Очевидно, что электропроводность полупроводника тем больше, чем больше заряд свободных электронов и дырок -q и q, чем больше их концентрации n и p и чем быстрее они способны двигаться под действием электрического поля:
σ = q(µnn + µpp) (5)
Здесь µn и µp - коэффициенты подвижности свободных электронов и дырок – средние скорости их движения под действием электрического поля с напряжённостью 1 В/м. Подстановка (5) в (4) даёт:
J = q(µnn + µpp)E (6)
Электронная и дырочная составляющие плотности тока складываются, так как противоположны и направления движения свободных электронов и дырок и знаки их зарядов. Средняя скорость электронов (следовательно, и дырок) относительно невелика из-за столкновений электронов с атомами кристаллической решётки. При столкновениях часть кинетической энергии движущихся электронов передается атомам, чем вызывается выделение тепла в любой проводящей среде при протекании в ней тока. Электропроводность собственного полупроводника быстро (экспоненциально) растёт с увеличением температуры, так как при этом усиливается термогенерация электронно-дырочных пар и растёт их концентрация.
1.5 Токи в полупроводниках
Дрейфовым током называется ток, обусловленный движением носителей заряда под действием электрического поля. Выражение (4) соответствует плотности дрейфового тока Jдр. В общем случае дрейфовый ток может иметь электронную Jдр.n и дырочную Jдр.p составляющие. Направленное движение носителей заряда может быть также результатом диффузии – повсеместно наблюдаемого физического явления. Диффузией называется движение любых подвижных частиц из области с большей в область с меньшей концентрацией, обусловленное их хаотическим тепловым движением. Если происходит диффузия заряженных частиц, наблюдается направленное перемещение зарядов, т.е. возникает диффузионный ток. Диффузионный ток невозможен в однородной среде, концентрация подвижных зарядов в которой везде одинакова, а также при нулевой абсолютной температуре. Плотности электронного и дырочного диффузионного токов, обусловленных диффузией свободных электронов и дырок, описываются выражениями:
Jдф.n = qDn dn/dx (7), Jдф.p = - qDp dp/dx (8)
Здесь Dn и Dp – коэффициенты диффузии свободных электронов и дырок; dn/dx и dp/dx – градиенты концентрации свободных электронов и дырок. Коэффициенты диффузии, как и коэффициенты подвижности, характеризуют среднюю скорость движения свободных электронов и дырок. Она зависит от количества столкновений электронов с атомами кристаллической решётки, а также от температуры, поскольку с ростом температуры растет скорость хаотического теплового движения. Поэтому коэффициент диффузии пропорционален коэффициенту подвижности и температуре:
D = µkT/q, (9)
где k – постоянная Больцмана; T – абсолютная температура. Градиент концентрации – это вектор, величина которого равна скорости увеличения или уменьшения концентрации. В общем случае он указывает направление наискорейшего увеличения концентрации или наискорейшего её уменьшения (антиградиент). В (7) и (8) используются одномерные градиенты, учитывающие изменение концентрации в главном направлении x. На рис. 6 изображен образец полупроводника, в левой части p+ которого концентрация дырок больше, чем в правой части р. Ниже построены зависимости концентрации и градиента концентрации дырок от координаты x. Очевидно, что в переходной области будет происходить диффузия дырок слева направо. В глубине областей, где полупроводник однороден, диффузии не будет.
Положительным направлением тока считается направление движения положительных зарядов (или обратное направление, если заряды отрицательные). Именно так движутся дырки в образце, вдоль положительного направления x. Согласно (8), отрицательный градиент образца дал бы отрицательное значение плотности тока и тока, если бы это выражение не имело знак «минус».
1.6 Особенности примесных полупроводников
В собственных полупроводниках концентрации свободных электронов и дырок равны (собственная концентрация ni). Однако для электронных элементов и интегральных схем необходимы полупроводники с преобладанием свободных электронов (n – тип) и с преобладанием дырок (р – тип). Их называют также полупроводниками с электронной и дырочной проводимостью. Чтобы получить полупроводник n – типа, в него при изготовлении кристалла добавляют донорную примесь. Атомы такой примеси имеют большую, чем сам полупроводник, валентность. Например, в кремний (число валентных электронов на внешней электронной оболочке равно 4) может быть добавлен фосфор (валентность 5). Это означает, что в полупроводнике появятся избыточные электроны, не участвующие в образовании связей между атомами. Такие электроны легко становятся свободными, достигается преобладание свободных электронов. Преобладающие по количеству носители называются основными. Неосновных носителей обычно на несколько порядков меньше. На рис. 7 изображена энергетическая диаграмма полупроводника n – типа. Донорная примесь порождает разрешённые уровни в запрещённой зоне, вблизи дна зоны проводимости.
Рис. 7
Электроны с таким уровнем энергии становятся свободными при приобретении очень небольшой дополнительной энергии, энергии активации Wакт. Поэтому активация примеси происходит уже при низких температурах, когда термогенерация подвижных носителей самим полупроводником незначительна. Зависимость концентрации свободных электронов n от температуры Т приобретает вид рис. 8.
Рис. 8
Участок 1 этой зависимости соответствует быстрому росту концентрации за счет активации примеси. Рост прекращается, когда будут активированы все атомы примеси (участок 2). В области высоких температур рост возобновляется за счёт усиления термогенерации атомами самого полупроводника (участок 3). На этом же рисунке показана экспоненциальная зависимость концентрацииni для собственного полупроводника. По сравнению с ним примесный полупроводник обладает большим достоинством – наличием обширного участка 2 с практически неизменной концентрацией и проводимостью в большом диапазоне температур T1 – T2. Выбирая концентрацию донорной примеси Nд при изготовлении можно получать желательные и стабильные параметры полупроводника в необходимом диапазоне температур. При этом обеспечивается соотношение:
n = Nд + ni ≈ Nд = const (10)
Аналогичные изменения происходят при добавлении акцепторной примеси для изготовления полупроводника р – типа. Такая примесь, например бор с валентностью 3, имеет меньшую, чем кремний, валентность, что приводит к дефициту валентных электронов. Достигается преобладание дырок. Появление акцепторных атомов приводит к появлению разрешённых уровней в запрещённой зоне вблизи потолка валентной зоны, рис. 9.
Рис. 9
Эти уровни легко заполняются валентными электронами, для чего требуется небольшая дополнительная энергия активации Wакт. Температурная зависимость концентрации дырок такая же, как и у полупроводника n – типа. На термостабильном участке выполняется аналогичное (10) соотношение:
p = Nа + ni ≈ Nа = const, (11)
где Nа – концентрация акцепторной примеси. На рис. 10 изображены фрагменты кристаллических решёток с донорным (рис. 10а) и акцепторным (рис. 10б) атомом.
Рис. 10
При утрате одного из пяти валентных электронов донорного атома он превращается в положительно заряженный ион. Суммарный заряд этого иона и порождённого донорным атомом свободного электрона равен нулю, полупроводник остаётся электрически нейтральным. Однако, если свободный электрон исчезнет, например в результате рекомбинации, заряд иона становится «заметным», электрическая нейтральность нарушается. Такие ионы называются нескомпенсированными ионами донорной примеси. Каждый такой ион, как и дырка, имеет заряд +q, однако в отличие от дырки является неподвижным зарядом. Чем больше таких ионов, тем сильнее создаваемое ими электрическое поле, которое влияет на процессы в полупроводнике. Аналогично, при захвате акцепторным атомом недостающего валентного электрона, он превращается в отрицательно заряженный ион. Возникшая при этом дырка уравновешивает заряд иона, однако, если дырка исчезает из окрестности иона, ион становится нескомпенсированным ионом акцепторной примеси с зарядом –q. Суммарное электрическое поле таких ионов также влияет на процессы в полупроводнике.
1.7 Расчёт концентрации подвижных носителей заряда
Для определения собственной концентрации заданного полупроводника при заданной температуре можно воспользоваться формулой: (12)
В неё входит ряд констант, определённых для используемых в электронике полупроводников с высокой точностью и приводимых как в научной, так и в учебной литературе. Кроме того, в литературе часто указываются значения ni для основных полупроводников при комнатной температуре Ткомн . При такой температуре для кремния ni ≈ 1010 см-3 . Обращает на себя внимание ничтожность этой величины по сравнению с концентрацией атомов самого полупроводника Nат ≈ 1023 см-3 . Если известна концентрация примеси, например, донорной примеси Nд и полупроводник используется в диапазоне температур, обеспечивающем стабильность параметров, для определения концентрации основных носителей можно воспользоваться формулой (10). При типичной для полупроводниковых элементов концентрации примесей 1018 см-3 концентрация основных носителей n будет такой же. Концентрацию неосновных носителей р можно найти из соотношения:
np = ni2 (13)
Это соотношение отражает очевидный факт: если температура неизменна (ni = const), то чем больше основных носителей, тем меньше неосновных, так как с ростом концентрации основных носителей возрастает вероятность их встречи с неосновными носителями и их рекомбинации. Для рассматриваемого примера для кремния при комнатной температуре из (13) следует:
p = ni2/n= 102 см-3
Обращает на себя внимание ничтожность концентрации неосновных носителей 102 см-3 по отношению к концентрации основных носителей 1018 см-3. Тем не менее, неосновные носители часто являются главными факторами процессов в электронных элементах и интегральных схемах.
2. ОБЩИЕ СВОЙСТВА КОНТАКТОВ ВЕЩЕСТВ В ЭЛЕКТРОНИКЕ
2.1 Контакты и структуры в электронике
В электронике используются самые различные вещества – проводники, полупроводники, диэлектрики. Они образуют самые разнообразные контакты, в которых наблюдаются контактные явления. Многослойные контакты называют структурами. Примерами контактов являются контакты металлов, призванные беспрепятственно пропускать ток, контакт полупроводников p и n-типа (p-n переход). Примерами структур являются электрический конденсатор, в котором контактируют металл, диэлектрик и снова металл (структура МДМ), МДП-структура, в которой контактируют металл, диэлектрик и полупроводник. МДП-структура является основой самого распространённого электронного элемента нашего времени – МДП-транзистора.
2.2 Контактная разность потенциалов
На границе упомянутых веществ всегда возникает электрическое поле, сила которого характеризуется напряжённостью поля Е или, чаще, контактной разностью потенциалов φк. На рис. 11 изображён контакт двух металлов.
Рис. 11
Концентрация свободных электронов в металлах очень высокая. При ненулевой температуре они хаотично движутся, обладая в отдельные моменты времени большой кинетической энергией. Если эта энергия достаточна для выхода электрона из металла, он пересекает контакт и переходит в смежную область. Таким образом, наблюдаются два встречных потока электронов. Если металлы неодинаковы, неодинакова и сила этих потоков. В результате в одной из приграничных областей концентрация свободных электронов увеличится (обогащение), в другой – уменьшится (обеднение). Равенство по модулю положительных зарядов ядер и отрицательных зарядов электронов в этих областях нарушается, они приобретают заряд: отрицательный в обогащенной области, положительный в обеднённой области. Эти заряды создают в приграничных областях электрическое поле с контактной разностью потенциалов φк. Работа, которую надо совершить, для выхода электрона из металла, называется работой выхода. Численно она равна qφ, где φ – потенциал электрического поля на поверхности. Для металлов с работами выхода qφ1 и qφ2 контактная разность потенциалов определяется выражением:
φк = φ1 - φ2 (14)
Контактная разность потенциалов возникает на границе любых типов проводников и полупроводников. Причиной этого, как и в случае двух металлов, является нарушение электрической нейтральности приграничных областей из-за перемещения зарядов. Электрическое поле в контакте может способствовать или препятствовать движению подвижных носителей заряда. Потому распространён термин потенциальный барьер, высота которого равна φк. Хотя для контактов между металлами характерна небольшая величина φк и они хорошо проводят ток, некоторые пары металлов как электрические контакты недопустимы. Так, контакт алюминиевого и медного проводов нарушается и даже разрушается в течение короткого времени. Причина – электрохимическая коррозия, обусловленная наличием φк .
2.3 Собственные токи в контактах
Так как проводники и полупроводники способны проводить ток, в контактах между ними в отсутствие внешнего напряжения могут возникать токи. Рассмотрим, например, контакт полупроводников, отличающихся только концентрацией донорной примеси, рис. 12. Рис. 12
Здесь левая область, обозначенная как n+, обладает более высокой концентрацией примесей и основных носителей – свободных электронов. В таком контакте существуют условия для возникновения диффузии: концентрация свободных электронов в n+ области больше, чем в n области, температура не равна нулю. Свободные электроны будут диффундировать из n+ области в n область (обозначены на рисунке кружками, стрелка указывает направление движения). Следовательно, в таком контакте существует диффузионный ток Iдф. В n+ области, теряющей часть отрицательных зарядов, возникает обеднение и образуется положительный заряд нескомпенсированных ионов донорной примеси (обозначены, в отличие от подвижных зарядов, квадратами). В n области, в результате обогащения возникает избыточный отрицательный заряд. Поэтому появляется собственное электрическое поле с контактной разностью потенциалов φк. Это поле заставляет часть свободных электронов пересекать контакт в обратном направлении, т.е. порождает встречный дрейфовый ток Iдр. Устанавливается равновесное состояние:
Iдф = Iдр (15)
Токи равны и противоположны, поэтому тока во внешней цепи нет. Нарушение равновесия в отсутствие внешнего напряжения невозможно. Например, при возникновении преобладания Iдф из-за усиления диффузии увеличатся положительный и отрицательный заряд приграничных областей, усилится электрическое поле и возрастёт встречный Iдр. Равновесие восстановится. Наличие и равенство Iдф и Iдр наблюдается в любых контактах, в которых есть подвижные носители заряда и собственное электрическое поле.
2.4 Электроёмкость контактов
Электроёмкостью, или просто ёмкостью, называется способность различных объектов накапливать и сохранять электрические заряды. Барьерной ёмкостью называют ёмкость таких объектов, в которых подвижные заряды сохраняются из-за отсутствия пути для их движения, т.е. для тока разряда, т.к. существует препятствие для этого тока. Таким препятствием является, например, диэлектрический слой конденсатора или диэлектрический слой между металлом и полупроводником МДП-структуры. Подобное препятствие образует также обеднённый слой полупроводника. Концентрация подвижных носителей заряда в обеднённом полупроводнике может быть настолько малой, что он, как и диэлектрик, почти не проводит ток. Величина барьерной ёмкости контакта зависит от его площади S, толщины диэлектрического или обеднённого слоя w и его диэлектрической проницаемости εε0:
Сб = εε0S/w (16)
Диффузионной ёмкостью обладают объекты, в которых подвижные носители заряда диффундируют в некоторую полупроводниковую область и создают здесь диффузионный заряд. Диффузионный заряд и диффузионная ёмкость пропорциональны диффузионному току Iдф этих носителей и их среднему времени жизни τ:
Cдф = τIдф/φт , (17)
где φт = kT/q - термический потенциал. В среднем, спустя время 2…3τ* носители заряда погибают в результате рекомбинации с зарядами области, в которую они проникли. Поэтому диффузионный заряд и диффузионная ёмкость существуют пока происходит приток новых носителей, т.е. при Iдф ≠ 0.
* спустя время τ, концентрация пересекших границу контакта в некоторый момент времени носителей уменьшается в e раз, спустя время 2…3τ почти все они рекомбинируют с основными носителями. Наличие емкости контакта, требующей времени на заряд и разряд, определяет его быстродействие, т.е. способность быстро переходить из закрытого состояния в открытое и наоборот.
2.5 Электрический и тепловой пробой в контактах
Пробоем называется резкое возрастание тока в диэлектрике или обеднённом полупроводнике при достижении напряжения на таких слоях значения напряжения пробоя Uпр. В допробойном состоянии, при U < Uпр, ток ничтожен, так как создаётся движением ничтожного количества подвижных носителей. Электрический пробой диэлектрического или обеднённого слоя возникает при превышении в нём напряжённости поля некоторой критической напряжённости Екр. При этом напряжение не обязательно большое, так как напряженность поля Е ≈ U/w будет большой и при малых напряжениях, если мала толщина слоя w. Типичным электрическим пробоем является лавинный пробой. При таком пробое сильное электрическое поле разгоняет свободные электроны до столь значительной скорости, что их кинетической энергии при соударениях с атомами диэлектрика или обеднённого полупроводника хватает для превращения валентных электронов атомов в свободные. Появляются новые свободные электроны, которые также разгоняются электрическим полем и соударяются с атомами. Концентрация свободных электронов и ток резко возрастают. Лавинный пробой считается обратимым, так как он исчезает при уменьшении напряжения на обеднённом слое. Тепловой пробой возникает, как правило, вслед за лавинным. Возросший при лавинном пробое ток увеличивает количество выделяющегося тепла, температура слоя возрастает. В результате усиливается термогенерация подвижных носителей, растёт их концентрация, ток становится ещё больше, температура ещё выше и т.д. Перегрев слоя приводит к его разрушению, поэтому тепловой пробой считается необратимым. При лавинном пробое исчезает главное полезное свойство диэлектрического или обеднённого слоёв – низкая электропроводность, при тепловом эти слои вообще разрушаются.
3. КОНТАКТ МЕТАЛЛ – ПОЛУПРОВОДНИК. ДИОДЫ ШОТКИ
3.1. Основные свойства металло-полупроводниковых контактов Контакт металл-полупроводник (m-n или m-p переход), относится к наиболее распространенным в электронике типам контактов. Чаще всего это обычный, омический контакт. Его сопротивление невелико, не зависит от знака и величины приложенного напряжения. Ток в омическом контакте подчиняется закону Ома. Такие контакты совершенно необходимы для электрического соединения элементов или их частей друг с другом. Однако некоторые металлы и полупроводники образуют так называемые контакты Шотки, обладающие односторонней проводимостью. При прямом напряжении Uпр они хорошо пропускают ток (открытое состояние), при обратном напряжении Uобр тока почти нет (закрытое состояние). Такие контакты используются в диодах Шотки и некоторых типах транзисторов. Характер контакта металл–полупроводник зависит от соотношения работ выхода контактирующего металла qjм и полупроводника qjп. Если, например, qjм<qjп, будет преобладать поток свободных электронов из металла в полупроводник. При этом в m-n переходе в приграничной области полупроводника образуется избыток свободных электронов, т.е. обогащенный слой, рис. 13,а. В таком виде в контакте свободные электроны имеются во всех его частях, и поэтому он обладает очень маленьким электрическим сопротивлением, т.е. является омическим контактом.
а) б)
Рис. 13
ВАХ омического контакта линейна. Его главным параметром является сопротивление R, которое должно быть минимальным. Оно определяется, главным образом, параметрами полупроводниковой области, сопротивление которой намного больше. Сопротивление этой области и контакта в целом зависит от длины области L, площади её поперечного сечения S и удельного сопротивления ρ. Удельное сопротивление, в свою очередь, зависит от концентрации носителей n и их подвижности µn:
R = ρL/S = L/ µnnS (18)
3.2. Диоды Шотки
Если qjм > qjп, в m-n переходе преобладает поток электронов из полупроводника в металл, рис. 13,б. В n-области образуется обеднённый слой. Уменьшение концентрации свободных электронов в обеднённом слое приводит к появлению здесь положительного заряда нескомпенсированных ионов донорной примеси. Заряды в приграничных областях создают собственное электрическое поле с контактной разностью потенциалов
jк0 = jm – jп (19) где jк0 – контактная разность потенциалов в равновесном состоянии, т.е. в отсутствие внешнего напряжения. Чтобы получить открытое состояние, необходимо подать на контакт прямое напряжение, плюс к m – области, минус к n – области. Свободные электроны n – области начнут заполнять обеднённый слой, контактная разность потенциалов уменьшится, потенциальный барьер понизится:
jк = jк0 – Uпр (20)
Распределение свободных электронов примет вид рис. 13,а. Высокая концентрация свободных электронов во всех частях контакта обусловит протекание большого дрейфового тока, прямого тока Iпр. При обратном напряжении
jк = jк0 + Uобр , (21)
т.е. контактная разность потенциалов и потенциальный барьер возрастут. В обеднённом слое концентрация свободных электронов станет ещё меньше, сам слой расширится. Обратный ток Iобр будет ничтожным. Поэтому при qjм > qjп m-n переход обладает односторонней проводимостью, т.е. является контактом Шотки. Аналогичная картина наблюдается в менее распространённом m-p контакте. При qjм < qjp это контакт Шотки, при qjм > qjp – омический контакт. Вольт-амперные характеристики (ВАХ)омического контакта и контакта Шотки изображены на рис. 14,а и рис. 14,б:
а) б)
ВАХ контакта Шотки описывается формулой Шокли:
I = I0(eU/jT – 1), (22)
Термический потенциал jT при комнатной температуре составляет 0,025 В, а прямые напряжения составляют десятые доли В. Потому при прямых (положительных) напряжениях единицей в скобках в формуле (22) можно пренебречь. Ток насыщения, или тепловой ток I0 при неизменной температуре – константа, определяющаяся конструкцией контакта. Поэтому ВАХ в области прямых напряжений, так называемая прямая ветвь - экспоненциальная. При обратных напряжениях протекает незначительный ток I0, а при обратных напряжениях, превышающих напряжение пробоя Uпр, возникает электрический пробой и ток резко возрастает. Важнейшими достоинствами диодов Шотки являются: - наименьшие по сравнению с другими диодами напряжения открытого состояния, в пределах 0,2…0,5 В. Это означает, что в диодах Шотки, по сравнению с другими диодами, при одинаковом прямом токе рассеиваемая мощность Pрасс = UпрIпр меньше. Поэтому диоды Шотки отличаются меньшими тепловыми потерями; - в открытом состоянии ток в них дрейфовый, т.к. его диффузионная составляющая ничтожна. Поэтому у диодов Шотки нет диффузионной ёмкости, емкость чисто барьерная и небольшая, они отличаются высоким быстродействием.
4. КОНТАКТ ПОЛУПРОВОДНИКОВ Р- И N- ТИПА
4.1. Основные свойства p-n перехода
Контакт p и n полупроводников, или p-n переход, как и m-n переход, является одним из распространенных видов контактов, используемых в электронике. Его главным свойством является односторонняя проводимость, т.е. способность хорошо проводить ток только при одной полярности приложенного напряжения (прямое напряжение). При обратном напряжении ток на несколько порядков меньше. Как правило, одна из областей p-n перехода имеет намного более высокую концентрацию донорной примеси Nд или акцепторной примеси Nа. Область с большей концентрацией примесей называют также сильнолегированной областью, с меньшей – слаболегированной. Такие переходы называют асимметричными, их сильнолегированную область – эмиттером, слаболегированную – базой. Сильнолегированную область обозначают n+ или p+ , рис. 15:
Nд>>Nа Nа>>Nд база эмиттер эмиттер база p n+ p+ n
Рис. 15
На границе p и n областей существуют значительные градиенты концентрации свободных электронов и дырок dn/dxи dp/dx. Поэтому в p-n переходе даже в отсутствие внешнего напряжения происходит диффузия основных носителей в смежную область, т.е. наблюдается диффузионный ток основных носителей Iдф. При этом в p-n+ переходе dn/dx» dp/dx и поэтому будет преобладать электронная составляющая диффузионного тока Iдф.n. В p+-n переходе dn/dx «dp/dx и поэтому будет преобладать дырочная составляющая Iдф.p. Диффузия основных носителей в смежную область, где они становятся неосновными, приводит к рекомбинации с основными носителями смежной области. В результате рекомбинации в приграничных областях концентрация свободных электронов и дырок очень низкая, образуется обедненный слой. В этом слое атомы примесей превращаются в нескомпенсированные ионы. Из-за очень низкой концентрации подвижных носителей заряд нескомпенсированных ионов примесей будет здесь главным типом электрических зарядов. В приграничных областях возникают два слоя таких зарядов: отрицательный заряд в р – области, положительный заряд в n – области, рис. 15. Эти заряды создают собственное электрическое поле p-n перехода с контактной разностью потенциалов φк0. Собственное электрическое поле p-n перехода – тормозящее для диффундирующих основных носителей (образует потенциальный барьер). Это ограничивает диффузию основных носителей. Это же поле – ускоряющее для неосновных носителей, что вызывает встречный дрейф неосновных носителей, т.е. встречный дрейфовый ток Iдр = Iдф.p + Iдф.n. Чем интенсивнее диффузия, тем сильнее поле перехода и больше дрейфовый ток. Поэтому возникает устойчивое равновесие диффузионного и дрейфового токов, в результате чего тока во внешней цепи нет. Выравнивания концентраций, как это было бы, например, при диффузии газов, не происходит. Если к переходу приложено внешнее напряжение, сила поля в переходе изменяется. Когда к р – области приложен плюс внешнего источника, т.е. при прямом напряжении, поле в переходе ослабевает (потенциальный барьер понижается):
φк = φк0 - Uпр . (23)
Поэтому усиливается диффузия основных носителей, и ослабевает дрейф неосновных. Возникает большой прямой ток Iпр – большой диффузионный ток основных носителей. Когда к р – области приложен минус, т.е. при обратном напряжении, поле в переходе усиливается (потенциальный барьер возрастает):
φк = φк0 + Uобр . (24)
Диффузия основных носителей при этом ослабевает. Возникает преобладание дрейфового тока неосновных носителей, т.е. обратный ток Iобр. Так как концентрация неосновных носителей очень мала, обратный ток намного, на несколько порядков, меньше. Этим и объясняется главное свойство p–n перехода: высокая проводимость при прямом напряжении, очень низкая – при обратном напряжении.
4.2. Основные числовые характеристики p-n перехода.
Контактную разность потенциалов в отсутствие внешнего напряжения jk0 можно найти по формуле:
NANД jk0 = jT ln –––––--, (25) ni2
Подставив сюда значение термического потенциала при комнатной температуре jT = 0.025 В, типичные значения концентрации примесей асимметричного p-n перехода для базы 1016, для эмиттера 1018 см-3 и собственную концентрацию кремния при комнатной температуре ni ≈ 1010 см-3, получим типичную величину:
jk0 ≈ 0,84 В (26)
Примерно такое прямое напряжение надо подать на кремниевый p-n переход, чтобы предельно понизить потенциальный барьер и обеспечить полностью открытое состояние. Другим важнейшим параметром p-n перехода является его толщина, или ширина, w. За w принимается протяженность приграничных областей с нескомпенсированными ионами примесей, или, что то же самое, толщина обеднённого слоя:
, (26) Для кремниевого p-n перехода при указанных выше исходных данных w ≈ 1 мкм, что также является типичной величиной. При подаче прямого напряжения переход сужается, а при подаче обратного напряжения расширяется. В этих случаях его толщину можно рассчитать, подставляя вместо φk0 в (26) φk из (23) или (24). От толщины перехода зависят его барьерная ёмкость (16), напряжение лавинного пробоя и другие важные параметры. В p-n переходе напряжённость электрического поля при условии его однородности составит величину
E = Uобр/w (27)
и может достигать сотен кВ/см.
4.3 Вольт-амперная характеристика p-n перехода
Вольт-амперная характеристика (ВАХ) p-n перехода, в основной своей части, как и ВАХ m-n контакта Шотки, описывается формулой Шокли (22). Подчиняющуюся этой закономерности ВАХ называют идеальной, или теоретической ВАХ, рис. 16:
Рис. 16
ВАХ реальных p-n и m-n диодов сильно отклоняются от идеальной ВАХ в области больших обратных напряжений, когда возникает пробой (участок пробоя). В области больших прямых токов отклонение обусловлено тем, что сопротивление заполненного носителями обеднённого слоя очень мало. При этом сопротивление перехода в целом определяется, в основном, сопротивлением прилегающих к переходу областей, в первую очередь, сопротивлением базы rб. У диодов Шотки отклонение реальной ВАХ от экспоненты при больших токах проявляется слабее, т.к. для них слабое легирование полупроводниковой области нехарактерно. Значительное расхождение наблюдается также в допробойной части обратной ветви ВАХ. Согласно формуле Шокли при обратных напряжениях обратный ток неизменен и равен току насыщения I0. Однако в реальности на этот ток накладываются ещё несколько токов, растущих с увеличением Uобр. Одной из составляющих обратного тока является ток утечки Iут, который обусловлен движением носителей не в самом контакте, а по его поверхности. Поверхность полупроводника взаимодействует с окружающей средой и, обладая сводными валентными связями, способна захватывать посторонние атомы. Их валентность, вероятнее всего, будет отличаться от валентности самого полупроводника, т.е. эти атомы будут для полупроводника донорными или акцепторными примесями. В результате поверхность окажется сильнолегированной и будет обладать повышенной электропроводностью. Ток утечки растёт с увеличением Uобр и, складываясь с I0, создаёт наклон допробойной части ВАХ.
5. ДИОДЫ НА ОСНОВЕ M-N, P-N ПЕРЕХОДОВ И P-I-N СТРУКТУРЫ
5.1 Мощный выпрямительный диод
К мощным относят высоковольтные и сильноточные диоды, переход которых способен выдерживать большие обратные напряжения (до нескольких кВ) и большие прямые токи (до нескольких кА). Согласно (27), при заданном обратном напряжении Uобр < Uпр напряжённость поля в p-n переходе можно понижать, уменьшая толщину его обеднённого слоя w. Тем самым достигается увеличение напряжения пробоя Uпр. Уменьшение w, согласно (26), достигается уменьшением концентрации примесей. Поэтому одну из областей, базу высоковольтного p-n диода делают слаболегированной. В m-n переходах Uпр намного меньше и в качестве высоковольтных диодов они не используются. Толщина p-n перехода будет ещё больше, если сделать слаболегированной и вторую область. Однако в этом случае уменьшатся градиенты концентрации обоих видов носителей и поэтому окажется небольшим диффузионный прямой ток. Поэтому вторую область перехода, эмиттер, делают сильнолегированной. Это позволяет сделать достаточно большой электронную или дырочную составляющую диффузионного тока. Тем самым обеспечивается необходимое значение прямого тока. Увеличение допустимого прямого тока достигается также за счёт увеличения площади p-n и m-n переходов. При этом снижается плотность прямого тока Jпр = Iпр/S, которая не должна превышать критического значения. Кроме того, при увеличении S уменьшается сопротивление открытого состояния, что уменьшает тепловые потери при больших токах. Особенно большой прямой ток достигается в диодах Шотки, так как их напряжение открытого состояния и тепловые потери в 2…3 раза меньше, чем у p-n диодов. Поскольку в ассиметричных p-n переходах (с эмиттером и базой) одновременно максимизируется обратное напряжение и прямой ток, именно такие, ассиметричные переходы наиболее распространены. Мощные выпрямительные диоды применяются в выпрямителях – преобразователях переменного тока в постоянный.
5.2. Импульсные и высокочастотные диоды
Импульсные диоды должны обладать минимальным временем переключения из закрытого состояния в открытое и наоборот. В высокочастотных диодах минимальны паразитные реактивные составляющие токов. То и другое обеспечивается, в основном, минимизацией барьерной и диффузионной ёмкости диодов. Уменьшение барьерной ёмкости m-n и p-n переходов, согласно (16), достигается уменьшением площади контакта S. На сегодня, благодаря интегральной технологии, она может составлять всего несколько десятков нм2. Однако уменьшение S находится в противоречии с необходимость обеспечить необходимый прямой ток. Поэтому выбор S и других величин в (16) всегда компромиссен. Известны также попытки перехода от кремния к полупроводникам с меньшей величиной εε0. Диффузионная ёмкость отсутствует в диодах Шотки, что делает их основным типом для указанных применений. В диодах с p-n переходом диффузионную ёмкость удаётся уменьшить за счёт уменьшения толщины базы. На рис. 17 изображены p-n+ диоды с обычной (а) и тонкой базой (б): Рис. 17.а Рис. 17.б
Т.к. у этих диодов эмиттером является сильнолегированная n-область, при прямом напряжении будет наблюдаться преимущественно электронный диффузионный ток. Рис. 17 демонстрирует распределение свободных электронов в обоих диодах. Очевидно, что в диоде с тонкой базой пространство, где существует диффузионный заряд, а также сам этот заряд, намного меньше. Поэтому здесь намного меньше и диффузионная ёмкость. Согласно (17), диффузионную емкость p-n диода можно также уменьшить, уменьшив среднее время жизни неосновных носителей в базе τ. Для этого, например, можно несколько увеличить концентрацию примеси в базе, что вызовет более интенсивную рекомбинацию и уменьшение τ. Всё сказанное в равной степени относится к m-n и p-n переходам в интегральных схемах, где они используются не только в качестве диодов, но и в составе других элементов.
5.3. Стабилитрон
Стабилитрон – диод, предназначенный для стабилизации напряжения в режиме электрического пробоя. Почти всегда в таком диоде используется кремниевый p-n переход, отличающийся способностью работать при температурах до 1250 С и малой склонностью к возникновению теплового пробоя. Схема включения стабилитрона представлена на рис. 18:
Рис. 18
Здесь Uвх – нестабильное напряжение источника питания – батареи, аккумулятора, солнечной батареи и т.п. На стабилитрон подано обратное напряжение, достаточное для возникновения электрического пробоя. Rогр не позволяет току в стабилитроне превысить предельно допустимое значение Iобр.макс. Тем самым исключается переход электрического пробоя в тепловой. Сопротивление нагрузки Rн включено параллельно стабилитрону. Поэтому напряжения на них равны и близки к напряжению пробоя Uпр. Напряжение на нагрузке, в зависимости от крутизны участка пробоя, остаётся более или менее стабильным.
5.4. ВАРИКАП
Варикап – диод, предназначенный для работы в режиме управляемой барьерной ёмкости Cб. При обратном напряжении на p-n переходе ток в нём очень небольшой и, если есть переменная составляющая Nд, существует ёмкостная составляющая обратного тока Iобр. Ёмкостный обратный ток тем больше, чем больше Cб и выше частота переменной составляющей. Его величина может намного превосходить активную составляющую обратного тока. Поэтому p-n переход при обратном напряжении можно использовать, как ёмкостный элемент. При прямом напряжении это невозможно, т.к. в этом случае появляется на несколько порядков больший активный прямой ток. Подставив (26) в (16) с учётом того, что при обратном напряжении jк = jк0 + Uобр, получим:
Cб = [2εε0(jк0 + Uобр)(Nа + Nд)/qNаNд]½ (28)
Из (28) следует, что барьерной емкостью можно управлять, изменяя обратное напряжение на p-n переходе. Таким образом, p-n диод при Uобр является элементом с ёмкостью Cб, которую можно изменять. При изготовлении варикапа полупроводник, тип примесей и закон их распределения в областях выбираются так, чтобы зависимость Cб(Uобр) была более сильной. В общем случае эта зависимость описывается выражением
Cб = [2εε0(jк0 + Uобр)(Nа + Nд)/qNаNд]m (29)
где m = 0,3…1. Схема включения варикапа приведена на рис. 19. Здесь варикап
Рис. 19
включён как ёмкость последовательного колебательного контура. На него подаётся управляющее обратное напряжение Uупр. Изменяя это напряжение можно настраивать колебательный контур на необходимую резонансную частоту ω0 = (1/√LC).
5.5. Диоды на основе p-i-n структуры
Значительно улучшить импульсные, частотные и другие свойства диодов позволяет использование p-i-n структуры. В такой структуре между p и n областями располагается i-область собственного полупроводника, рис. 20.
Рис. 20
Собственный полупроводник обладает на несколько порядков более низкой концентрацией свободных электронов и дырок по сравнению с p и n областями. Поскольку в таком полупроводнике примесей нет, эта область как бы «отодвигает» друг от друга слои с нескомпенсированными ионами примесей. В результате многократно возрастают w и сопротивление закрытого состояния, а также многократно уменьшается барьерная ёмкость. Чтобы сохранить высокие значения градиентов концентрации ≈ dn/dw и ≈ dp/dw и, тем самым, сохранить большим диффузионный прямой ток, толщину i-области l делают не слишком большой:
l < L, (30)
где L – диффузионная длина – среднее расстояние, на котором концентрация диффундирующих в i-область носителей уменьшается в e раз из-за рекомбинации. P-i-n диоды являются на сегодня одними из наиболее совершенных электронных ключей. Их обратный ток, барьерная ёмкость и сопротивление открытого состояния минимальны (у идеального ключа все эти параметры равны нулю).
5.6. Свето- и фото-диоды. Солнечные батареи
Устройство свето- и фото-диодов в целом одинаково, рис. 21. Одна из областей их p-n перехода очень тонкая, что позволяет возникающему в переходе свету излучаться в окружающее пространство (светодиод) или позволяет внешнему свету проникать в переход (фотодиод). В светодиодах используется излучательная рекомбинация, при которой рекомбинация каждой p-n пары порождает квант световой энергии.
Рис. 21
Интенсивная рекомбинация и свечение возможны только при протекании в светодиоде прямого тока от внешнего источника. Из (2) следует, что длина волны и цвет возникающего света определяются выражением:
λ = hc/Wз, (31)
где h – постоянная Планка, c – скорость света, Wз – ширина запрещённой зоны полупроводника. Согласно (31), цвет свечения определяется шириной запрещённой зоны полупроводника. Кремний светится в инфракрасном, невидимом глазу диапазоне. Кремниевые светодиоды широко применяются, когда их работа не должна видимым светом мешать человеку, например, в пультах управления. Светодиоды на основе фосфида галлия дают красное свечение, на основе карбида кремния – жёлтое и т.д. Решена проблема получения любого цвета свечения. В частности, три различных светодиода – красный, зелёный и синий решают эту проблему в пикселах светодиодных экранов. Быстро развивается теория и практика гетеропереходов – p-n переходов с полупроводниками различного типа в p- и n-областях. Им свойственно особенно высокое разнообразие возможных электрических и светотехнических характеристик. В значительной степени решена проблема высокого к.п.д. светодиодов, который достигает нескольких десятков процентов. Поэтому, а также благодаря исключительно высокой надёжности, светодиоды интенсивно вытесняют лампы накаливания и газонаполненные приборы в осветительных и сигнальных приборах. В фотодиодах внешний свет проникает в p-n переход и, если выполняется соотношение (31), вызывает в нём генерацию электронно-дырочных пар. Поскольку в переходе имеется собственное электрическое поле, ускоряющее для неосновных носителей, последние разводятся полем в противоположные стороны и, тем самым, увеличивают дрейфовую составляющую тока. Равновесие диффузионного и дрейфового токов нарушается и в режиме с замкнутой внешней цепью в ней появляется фототок. В режиме с разомкнутой внешней цепью на освещённом p-n переходе появляется фото-э.д.с., также возникающая в результате нарушения равновесного состояния. В обоих случаях фотодиод можно использовать для регистрации падающего на него света. В частности, кремниевый фотодиод помещают на управляемых внешним пультом электронных устройствах. Если в пульте применён кремниевый светодиод, энергия квантов его света, согласно (2) и (31), достаточна для генерации электронно-дырочных пар. Поскольку в освещаемом p-n переходе происходит преобразование световой энергии в электрическую, такие контакты используются в солнечных батареях. При идеально прозрачной атмосфере и в космосе мощность светового потока от Солнца на Земле достигает 1,4 кВт/м2.
6. СТРУКТУРА МЕТАЛЛ-ДИЭЛЕКТРИК-ПОЛУПРОВОДНИК. МДП-ТРАНЗИСТОР
6.1. Основные свойства МДП-структуры
МДП-структура содержит металлический слой, слой диэлектрика и слой полупроводника, рис. 22. Если используется самый распространённый
Рис. 22
полупроводник – кремний, то диэлектрик, как правило, двуокись кремния SiO2. Такой диэлектрик на поверхности кремния легко создаётся путём его окисления. Диэлектрический слой всегда очень тонкий, что обеспечивает проникание электрического поля в полупроводник при подаче на структуру внешнего напряжения Uвн. Полупроводник может быть как n, так и p типа. Пусть на МДП-структуру с полупроводником p-типа подано Uвн с полярностью: минус к металлу, плюс к полупроводнику, рис. 22б. Отрицательное поле металлического слоя будет проникать в приповерхностный слой полупроводника и втягивать сюда дырки. Концентрация дырок в этом слое p+ будет повышенной (режим обогащения). При подаче Uвн плюсом к металлу, рис. 22в, концентрация дырок в приповерхностном слое p- будет пониженной из-за вытеснения отсюда дырок положительным полем металлического слоя (р Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.11 сек.) |