|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Баллистика - раздел механики, изучающий движение тел в поле тяжести ЗемлиЗакон Ньютона Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго. Баллистика - раздел механики, изучающий движение тел в поле тяжести Земли. Баллистическое движение – движение с сохранением импульса, без последующего использования двигателя и пр. 12. В инерциальных системах ускорение, приобретаемое материальной точкой (телом), прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки (тела). 13. Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению: 14. Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив первый закон Ньютона (закон инерции): все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся. Прицип относительности в механике - Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.
15. Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. 16. Искусственный спутник земли - должен иметь начальную скорость, равную или немного большую первой космической скорости. 17.Сила тяжести – силы, с которой все тела притягиваются к Земле. Вес тела – сила, с которой тело действует на опору. Невесо́мост ь — состояние, при котором сила взаимодействия тела с опорой (вес тела), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела, отсутствует. 18. Деформация – изменение формы и размеров тела под действием внешних сил. Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации. Закон Гука Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.
где 19. Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». 20. Импульсом материальной точки называют величину равную произведению массы точки на ее скорость. 22. Работа силы - мера действия силы, зависящая от численной величины и направления силы и от перемещения точки её приложения Мощность — физическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Различают среднюю мощность за промежуток времени 23. Кинети́ческая эне́ргия — энергия механической системы, зависящая от скоростей движения её точек. Потенциальная энергия 24. Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.
25.
26. Равновесие — состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю Условия: · Векторная сумма всех сил, действующих на тело, равна нулю · Сумма моментов всех внешних сил, действующих на тело, относительно любой оси равна нулю 27. Механические колебания – это повторяющееся движение, при котором тело многократно проходит одно и то же положение в пространстве. Различают периодические и непериодические колебания. Колебательное движение -это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Условия возникновения своб.колебаний: 1. начальный запас энергии в системе (напр. потенциальной или кинетической) 28. Гармоническими колебаниями - называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса. Амплиту́да — максимальное значение смещения Период колебаний — время между двумя последовательными прохождениями тела через одно и то же положение Чaстота́ — равная числу полных циклов процесса, совершённых за единицу времени. 29. Затухающими наз. колебания, энергия (а значит, и амплитуда) которых уменьшается с течением времени. Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д. Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот. 30. Вынужденные колебания — колебания, происходящие под воздействием внешних сил, меняющихся во времени. Резона́нс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям. 31. Волна́ — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. По отношению к направлению · продольные волны (волны сжатия — частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука); · поперечные волны (волны сдвига,— частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред); Механические волны — это распространяющиеся в упругой среде возмущения (отклонения частиц среды от положения равновесия). Если колебания частиц и распространение волны происходят в одном направлении, волну называют продольной, а если эти движения происходят в перпендикулярных направлениях, — поперечной 32. Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах.
Скорость волны 33. Нагревание и охлаждение, испарение и кипение, плавление и отвердевание, конденсация — все это примеры тепловых явлений. Теплово́е движе́ние — процесс хаотического (беспорядочного) движения частиц, образующих вещество. Чаще всего рассматривается тепловое движение атомов и молекул. Молекулярно-кинетическая теория (МКТ) — теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений: · все тела состоят из частиц: атомов, молекул и ионов; · частицы находятся в непрерывном хаотическом движении (тепловом); · частицы взаимодействуют друг с другом путём абсолютно упругих столкновений. Молекулярно-кинетическая теория (МКТ) устанавливает связи между макро- и микропараметрами идеального газа 34. 35. Агрега́тное состоя́ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.8.7), поэтому молекула жидкости ведет себя иначе, чем молекула газа. В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии. 36. Единицы измерения давления Паскаль (ньютон на квадратный метр) Бар Миллиметр ртутного столба (торр) Микрон ртутного столба (10−3 торр) Миллиметр водяного (или водного) столба Атмосфера Атмосфера физическая Атмосфера техническая Килограмм-сила на квадратный сантиметр, килограмм-сила на квадратный метр Пьеза (тонно-сила на квадратный метр, стен на квадратный метр) 37. Физическая величина, равная половине произведения коэффициента жесткости на квадрат абсолютной деформации, называется потенциальной энергией упруго деформированного тела: 38. Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.(для адиаботических процессов) 40. 41. уравнение Клапейрона или уравнение Менделеева — Клапейрона — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: где · · · · 42. Температу́ра— скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия Абс. т - аиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.Абсолютный ноль определён как 0 K, что равно −273.15 °C. 43. Изотермический — термодинамический процесс, происходящий в физической системе при постоянной температуре. Закон Б-М. - При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно. 44. Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении и постоянной массе идеального газа. закон гей – люссака = для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется. 45. Изохорический или изохорный процесс— термодинамический процесс, который происходит при постоянном объёме. Закон Шарля - Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа. 46. Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева — Клапейрона) — формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: где · · · · 47. Испаре́ние — процесс перехода вещества из жидкого состояния в газообразное, происходящий на поверхности вещества. это парообразование с поверхности жидкости. При этом жидкость покидают более быстрые молекулы, обладающие большей скоростью. При любой температуре в жидкости находятся такие молекулы, которые обладают достаточной кинетической энергией, чтобы преодолеть силы сцепления между молекулами и совершить работу выхода из жидкости. К онденсация – это переход вещества из газообразного в жидкое состояние. Молекулы жидкости, покинувшие ее в процессе испарения, находятся в воздухе в состоянии непрерывного теплового движения. Так как движение молекул хаотичное, то какая-то часть молекул вновь попадает в жидкость.Число таких молекул тем больше, чем больше давление пара над жидкостью. Пар конденсируется. 48. Насыщенный пар - Это пар, находящийся в равновесии с жидкостью. При этом объем жидкости не увеличивается в результате конденсации пара и не уменьшается в результате ее испарения. Модель - немного воды в герметическом сосуде. Ненасыщенный пар — пар, не достигший динамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше. 49. С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры. Кипение - это интенсивное парообразование, которое происходит при нагревании жидкости не только с поверхности, но и внутри неё. 50. Относительная влажность — это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной температуре, выраженное в процентах.(волосного гигрометра, психрометр) 51. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ - стремление в-ва (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию) Коэффициент пропорциональности 52. Сма́чивание — это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости .Капиллярные явления, поверхностные явления на границе жидкости с др. средой, связанные с искривлением ее поверхности. Искривление поверхности жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, которое стремится сократить поверхность раздела и придать ограниченному объему жидкости форму шара. 53. Криста́ллы—— твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку. Кристаллизация — это процесс выделения твёрдой фазы в виде кристаллов из растворов или расплавов, в химической промышленности процесс кристаллизации используется для получения веществ в чистом виде. Плавле́ние —это процесс перехода тела из кристаллического твёрдого состояния в жидкое. Плавление происходит с поглощением удельной теплоты плавления. Уде́льная теплота́ плавле́ния — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества). 54. Под действием приложенных внешних сил твердые тела изменяют свою форму и объем - деформируются. Если после прекращения действия силы, форма и объем тела полностью восстанавливаются, то деформацию называют упругой, а тело - абсолютно упругим. Деформации, которые не исчезают после прекращения действия сил, называются пластическими, а тела - пластичными. Закон Гука - Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации 55. Работа в термодинамике - количественная характеристика преобразования энергии в физических процессах, зависит от вида процесса; работа системы положительна, если она отдает энергию, и отрицательна, если получает. Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных Qn и отданных Q0 энергий равна нулю: Полученная Qn и отданная Q0 теплоты численно равны, но Qn берется со знаком плюс, a Q0 - со знаком минус. 56. Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин. 57. 1 закон термодинамики: Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A, совершенной системой над внешними телами. 59. 2 закон термодинамики - все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия - мера хаотичности, неупорядоченности системы). 60. Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.) |