|
||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Шаговая регрессияОтбор факторов, проблема мультиколлинеарности, выбор гипотетической формы уравнения регрессии.
Важным этапом построения уже выбранного уравнения регрессии является отбор и последовательное включение факторных признаков. Сложность формирования уравнения множ. Регрессии в том, что почти все факторы нах. В зависимости др. от др. Проблема размерности модели (число необходимых факторов) явл. Одной из основных при построении моделей. Отбор факторных признаков: Сокращение размерности модели за счет исключения второстепенных, экономически и статистически несущественных факторов способствует простоте и качеству ее реализации. В то же время построение модели регрессии малой размерности может привести к тому, что такая модель будет недостаточно адекватна исследуемым явлениям и процессам. Шаговая регрессия (шаговый регрессионный анализ) 1). Фактор является незначимым, если его включение в уравнение регрессии только изменяет значение коэффициентов регрессии, не уменьшая суммы квадратов остатков и не увеличивая их значения. 2). Если при включении в модель соответствующего факторного признака величина множественного коэффициента корреляции увеличивается, а коэффициент регрессии не изменяется (или меняется несущественно), то данный признак существенен и его включение в уравнение регрессии необходимо, он значим. 3). Если же при включении в модель факторного признака коэффициенты регрессии меняют не только величину, но и знаки, а множественный коэффициент корреляции не возрастает, то данный факторный признак признается нецелесообразным для включения в модель связи (незначим). Под мультиколлинеарностью понимается тесная зависимость между факторными признаками, включенными в модель. Наличие мультиколлинеарности между признаками приводит к: - искажению величины параметров модели, которые имеют тенденцию к завышению; - изменению смысла экономической интерпретации коэффициентов регрессии; - осложнению процесса определения наиболее существенных факторных признаков. Причины возникновения мультиколлинеарности между признаками: - изучаемые факторные признаки, характеризующие одну и ту же сторону явления или процесса; - использование в качестве факторных признаков показателей, суммарное значение которых представляет собой постоянную величину; - факторные признаки, являются составными элементами друг друга; - факторные признаки, по экономическому смыслу дублируют друг друга. Этапы решения проблемы мультиколлинеарности: - - установление наличия мультиколлинеарности; - - определение причин возникновения мультиколлинеарности; - - разработка мер по ее устранению. Одним из индикаторов определения наличия мультиколлинеарности – превышение парных коэф-тов величины 0,8. Необходимо исклюю одну из переменных из модели, при этом какую из переменных оставить, а какую искл. Следует в первую очередь из эк. Соображений. Если с эк. Точки зрения нельзя отдать предпочтения, то оставляют тот, который имеет больший коэф. Кор-ции. С результатом. В результате число факторов уменьшается в модели и необходимо пересчитать модель и сделать анализ. Матрица парных коэф-тов корреляции:
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |