АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Расчет погрешностей косвенных измерений

Читайте также:
  1. I. Расчет параметров железнодорожного транспорта
  2. I.2. Определение расчетной длины и расчетной нагрузки на колонну
  3. II раздел. Расчет эффективности производственно-финансовой деятельности
  4. II. Расчет параметров автомобильного транспорта.
  5. III. Расчет параметров конвейерного транспорта.
  6. А президент Мубарак уперся. И уходить не захотел. Хотя расчет США был на обычную реакцию свергаемого главы государства. Восьмидесятидвухлетний старик оказался упрямым.
  7. А. Аналитический способ расчета.
  8. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  9. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  10. Анамнез и его разделы. Приоритет отечественной медицины в разработке анамнестического метода. Понятие о наводящих вопросах: прямых и косвенных.
  11. АУДИТ ОПЕРАЦИЙ ПО РАСЧЕТНЫМ СЧЕТАМ
  12. Аэродинамический расчет воздуховодов. Этапы расчета.

Расчет погрешностей непосредственных измерений

 

Обозначения, принятые в данной работе

 

-измеряемая величина, -среднее значение измеряемой величины, - абсолютная погрешность среднего значения измеряемой величины, - относительная погрешность среднего значения измеряемой величины.

 

Итак, предположим, что были проведены n измерений одной и той же величины в одних и тех же условиях. В этом случае можно рассчитать среднее значение этой величины в проведенных измерениях:

(1)

Как вычислить погрешность ? По следующей формуле:

(2)

В этой формуле используется коэффициент Стьюдента . Его значения при разных доверительных вероятностях и значениях приведены в таблице.

 

 

1.1. Пример расчета погрешностей непосредственных измерений:

 

Задача.

Проводили измерения длины металлического бруска. Было сделано 10 измерений и получены следующие значения: 10 мм, 11 мм, 12 мм, 13 мм, 10 мм, 10 мм, 11 мм, 10 мм, 10 мм, 11 мм. Требуется найти среднее значение измеряемой величины (длины бруска) и его погрешность .

 

Решение.

С использованием формулы (1) находим:

мм

Теперь с использованием формулы (2) найдем абсолютную погрешность среднего значения при доверительной вероятности и числе степеней свободы (используем значение =2,262, взятое из таблицы):

Запишем результат:

=10,8±0,70.95 мм

 

Расчет погрешностей косвенных измерений

 

Предположим, что в ходе эксперимента измеряются величины , а затем c использованием полученных значений вычисляется величина по формуле . При этом погрешности непосредственно измеряемых величин рассчитываются так, как это было описано в пункте 3.

 

Расчет среднего значения величины производится по зависимости с использованием средних значений аргументов .

 

Погрешность величины рассчитывается по следующей формуле:

,(3)

где - количество аргументов , - частные производные функции по аргументам , - абсолютная погрешность среднего значения аргумента .

 

Абсолютная погрешность, как и в случае с прямыми измерениями, рассчитывается по формуле .

2.1. Пример расчета погрешностей косвенных измерений:

 

Задача.

Было проведено 5 непосредственных измерений величин и . Для величины получены значения: 50, 51, 52, 50, 47; для величины получены значения: 500, 510, 476, 354, 520. Требуется рассчитать значение величины , определяемой по формуле и найти погрешность полученного значения.

 

Решение.

По формуле (1) найдем средние значения величин и :

 

Вычисляем :

Находим в таблице при доверительной вероятности 0,95 и числе степеней свободы значение . По формуле (2) рассчитываем погрешности средних значений величин и :

С использованием формулы (3) находим относительную погрешность среднего значения величины :

 

Найдем абсолютную погрешность среднего значения величины :

 

Запишем результат:

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)