АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Кодирование нечисловой информации

Читайте также:
  1. Автоматизированная информационная поисковая система правовой информации
  2. Автоматический поиск инструмента и его кодирование
  3. Адаптивное кодирование.
  4. Алфавитный подход к измерению информации.
  5. Алфавитный подход к измерению информации.
  6. Анализ диаграмм внешней передачи информации
  7. Аппаратные средства защиты информации
  8. Аттестация объектов информации
  9. Блок 3. Кодирование информации.
  10. Блочное двоичное кодирование
  11. В12. Поиск информации в базе данных по сформулированному условию
  12. В13. Знание о дискретной форме представления числовой, текстовой, графической и звуковой информации.

Цифровое представление символов

Правило цифрового представления символов следующее: каждому символу ставится в соответствие некоторое целое число, то есть каждый символ нумеруется.

Пример:

Рассмотрим последовательность строчных букв русского алфавита: а, б, в, г, д, е, ё, ж, з, и, й. к, л, м. н. о, п, р, с, т, у, ф, х, ц, ч, ш, щ, ъ, ы, в, э, ю, я. Присвоив каждой букве номер от 0 до 33. получим простейший способ представления символов. Последнее число - 32 в двоичной форме имеет вид 100000, то есть для хранения символа в памяти понадобится 6 бит.Так как с помощью шести бит можно представить число 26 - 1 = 63, то шести бит будет достаточно для представления 64 букв.

Имеются разные стандарты для представления, символов, которые отличаются лишь порядком нумерации символов. Наиболее-распространён американский стандартный код для информационного обмена - ASCII [American Standard-Code for Information Interchange] введён в США в 1963г. В 1977 году в несколько модифицированном виде он был принят в качестве всемирного стандарта Международной организации стандартов [International Standards Organization -. ISO] под названием ISO-646. Согласно этому стандарту каждому символу поставлено в соответствие число от 0 до 255. Символы от 0 до 127 - латинские буквы, цифры и знаки препинания - составляют постоянную часть таблицы. Остальные символы используются для представления национальных алфавитов. Конкретный состав этих символов определяется кодовой страницей. В русской версии ОC Windows95 используется кодовая, страница 866. В ОС Linux для представления русских букв более употребительна кодировка КОИ-8. Недостатки такого способа кодировки национального, алфавита очевидны. Во-первых, невозможно одновременное представление русских и ,например, французских букв. Во-вторых, такая кодировка совершенно непригодна для представления, китайских иероглифов. В 1991 году была создана некоммерческая организация Unicode, в которую входят представители ряда фирм (Borland. IBM, Noyell, Sun и др) и которая занимается развитием и внедрением нового стандарта. Кодировка Unicode использует 16 разрядов ,и может содержать 65536 символов. Это символы большинства народов мира, элементы иероглифов, спецсимволы, 5000 – мест для частного использования, резерв из 30000 мест.



Пример :

ASCII -код символа А.= 6510 =4116= 010001112;

Unicode -код символа С= 6710=00000000011001112

Цифровое представление изображений

Под изображением будем понимать прямоугольную область, закрашенную, непрерывно изменяющимся цветом. Поэтому, для представления изображений в целых числах необходимо отдельно дискретизировать прямоугольную область и цвет.

Для описания области она разбивается на множество точечных элементов - пцкселов [pixel]. Само множество называется растром [bit map, dot matrix, raster], а изображения, которые формируются на основе растра, называются растровыми.

Число пикселов называется разрешением [resolution]. Часто встречаются значения 640x480, 800x600. 1024x768. 1280x1024. Каждый пиксел нумеруется, начиная с нуля слева направо и сверху вниз. Для представления цвета используются цветовые модели. Цветовая модель [color model] это правило. по которому может быть вычислен цвет. Самая простая цветовая модель - битовая. В ней для описания цвета каждого цвета каждого пиксела (черного или белого), используется всего один бит. Для представления полноцветных изображений, используются несколько более сложных моделей. Известно, что любой цвет может быть представлен как сумма, трёх основных цветов: красного, зелёного и синего. Если интенсивность каждого цвета представить числом, то любой цвет будет выражаться через набор из трёх чисел. Так определяется наиболее известная цветовая RGB-модель. На каждое число отводится один байт. Так можно представить 224 цвета, то есть примерно 16,7 млн. цветов. Белый цвет в этой модели представляется как (1,1,1), чёрный - (0,0,0); красный - (1,0,0), синий - (0,0,1). Жёлтый цвет является комбинацией красного и зелёного и потому представляется как (1,1,0).

Цветовая модель RGB [Red-Green-Blue] была стандартизирована в 1931 г. и впервые использована в цветном телевидении. Модель RGB является аддитивной моделью, то есть цвет получается в результате сложения базовых цветов. Существуют и другие цветовые модели, которые для ряда задач оказываются более предпочтительными, чем RGB-модель. Например, для представления цвета в принтере используется субтрактивная CMY-модель [Cyan-Magenta-Yellow], цвет в которой получается в результате вычитания базовых цветов из белого цвета. Белому цвету в этой модели соответствует (0.0.0). чёрному - (1,1,1), голубому - (1,0,0). сиреневому - (0,1,0), жёлтому - (0,0,1). В цветовой модели HSV [Hue-Saturation-Value] цвет представляется через цвет, насыщенность и значение, а в модели HLS [Hue-Lightness-Saturation] через оттенок, яркость и насыщенность. Современные графические редакторы, как правило, могут работать с несколькими цветовыми моделями.

Цифровое представление звука

Звук можно описать в виде совокупности синусоидальных волн определённых частоты и амплитуды. Частота волны определяет высоту звукового тона, амплитуда - громкость звука. Частота измеряется в герцах (Гц [Hz]). Диапазон слышимости для человека составляет от 20 Гц до 17000 Гц (или 17 кГц).

Задача цифрового представления звука, таким образом, сводится к задаче описания синусоидальной кривой. Каждой дискретной выборке присваивается целое число - значение амплитуды. Количество выборок в секунду называется частотой выборки [sampling rate]. Количество возможных значений амплитуды называется точностью выборки [sampling size]. Таким образом, звуковая волна представляется в виде ступенчатой кривой. Ширина ступеньки тем меньше, чем больше частота выборки, а высота ступеньки тем меньше, чем больше точность выборки.

Пример

Возможности наиболее распространённой современной аппаратуры предусматривают работу с частотой выборки до 44.1 кГц, что позволяет правильно описывать звук частотой до 22,05 кГц. Точность выборки имеет всего два значения 8 бит и 16 бит. То есть для представления амплитуды 8-битного звука используется 28 = 256 уровней амплитуды.

 


1 | 2 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)