|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ТВЕРДОЕ ТЕЛО КАК ОБЪЕКТ СУШКИЛюбой высушиваемый материал может характеризоваться сорбционной емкостью по влаге, т. е. количеством влаги, сорбированной единицей массы продукта при контакте с влажным газом. Влагоемкость высушиваемых материалов, а также условия сушки, ее интенсивность и полнота зависят от природы высушиваемого вещества, которая определяет вид связи влаги с продуктом. Виды связи влаги с материалом можно классифицировать по величине энергии этой связи. Поскольку процесс сушки сопровождается, как правило, разрушением этих связей, целесообразно оценить их энергию. Согласно Лыкову, работа отрыва 1 моля воды А при изотермически обратимом процессе без изменения состава будет
. (21.25) где ∆F - изменение свободной энергии системы.
По уравнению Гиббса-Гельмгольца имеем
. (21.26) где Н - энтальпия изотермического процесса, или теплота отрыва связанной воды.
Дифференцируя уравнение (21.25) по Т, получим
. (21.27) где Q1 (w0)- теплота испарения воды из материала при данном влагосодержании w°; Q0 - теплота испарения свободной воды.
Так как Q1 (w °) > Q0 > 0, имеем , т. е. давление пара воды в материале меньше давления пара свободной воды. Обычно полагают, что в небольшом интервале температур
(21.28) Отсюда можно получить зависимость между давлением пара связанной воды, температурой и теплотой испарения:
. (21-29)
В порядке убывания энергии различают следующие формы связи влаги с материалом, предложенные П. А. Ребиндером: в случае химической связи влага прочно связана с веществом в виде гидроксильных ионов или молекулярных соединений типа кристаллогидратов. Химически связанная с материалом влага может быть удалена в результате химических взаимодействий или прокаливания. В процессе сушки химически связанная влага не удаляется; адсорбционная связь вызывается дисперсионными, электростатическими и индукционными силами. Вследствие энергетической ненасыщенности поверхностных молекул и ионов твердого тела на его поверхности образуется мономолекулярный слой адсорбированной влаги. Этот слой наиболее сильно связан с материалом. Последующие (полимолекулярные) слои удерживаются менее прочно, а свойства влаги, формирующей эти слои, приближаются к свойствам свободной жидкости. Энергия связи такого типа может быть рассчитана по уравнению (21.26); капиллярная связь обусловлена адсорбционной связью полимолекулярных слоев со стенками капилляров и более низким давлением пара над вогнутым мениском в капилляре по сравнению с плоской поверхностью. Понижение давления пара наблюдается в случае, если диаметр капилляра . Такие размеры капилляров (микрокапилляров) характерны только для очень тонкопористых тел. В макрокапиллярах влага практически не связана с материалом (кроме адсорбционного мономоле- кулярного слоя) и называется свободной. Такую влагу можно удалить механическими способами; осмотическая связь наиболее сильно выражена в растворах. Природа этой связи выражается в том, что давление пара над раствором меньше давления пара над чистым растворителем; физико-механическая связь определяет влагу, свободно удерживаемую в объеме пор тела. Она может быть удалена механическими способами, причем процесс обезвоживания в этом случае лимитируется гидравлическим сопротивлением пор тела, подобно сопротивлению фильтрующей перегородки и осадка при фильтрации. Отметим, что не существует резкой границы между различными формами связи влаги с материалом. По мере исчезновения одной формы начинает превалировать другая. По Лыкову, все твердые влажные материалы можно разделить на 3 группы: капиллярно-пористые; коллоидные; капиллярно-пористые коллоидные тела. Хотя эта классификация и является условной, она имеет большое практическое значение, поскольку возникла при обобщении результатов исследования процесса сушки различных материалов. В капиллярно-пористых материалах жидкость в основном связана капиллярными силами. При удалении влаги эти тела становятся хрупкими и в высушенном состоянии легко превращаются в порошок. Они слабо сжимаются. В качестве примера таких материалов можно привести силикагель, гипс, керамику, полимерные материалы типа винилхлоридных. К коллоидным телам относятся материалы, в которых преобладает адсорбционно и осмотически связанная влага. При высушивании эти тела значительно сжимаются, но при этом сохраняют эластичность (желатина, растворы полимеров). В капиллярно-пористых коллоидных телах жидкость имеет различные формы связи, характерные как для капиллярно-пористых, так и для коллоидных тел. По свойствам эти материалы занимают промеж} точное положение: стенки их капилляров эластичны и при поглощении влаги набухают, а при высушивании такие тела сжимаются (глина, торф, некоторые полимерные материалы типа полибутилметакрилата и др.). В последнее время предпринимаются попытки классифицировать высушиваемые влажные материалы по размерам пор. В основе такой классификации (Б. С. Сажин с сотр.) лежит критический радиус пор, уменьшению которого соответствуют усложнение внутрипористой структуры материала и увеличение диффузионного сопротивления движению влаги (в виде жидкости или пара) к поверхности частиц, а следовательно, увеличение продолжительности сушки и усложнение форм связи влаги с материалом. Все влажные материалы делят на 4 группы в порядке уменьшения критического диаметра пор, внутри которых различают подгруппы, учитывающие адгезионно-когезионные свойства материала (налипание на металлические поверхности, комкование и т.д.). К первой группе отнесены материалы с критическим диаметром пор более 100 нм. Продолжительность сушки материалов этой группы невелика (например, во взвешенном слое 0,5-3 с). Во вторую группу входят материалы с критическим диаметром пор от 100 до 6 нм. Продолжительность сушки материалов второй группы значительно больше, чем первой (во взвешенном состоянии – до 30 с). К третьей группе отнесены материалы с критическим диаметром пор от 6 до 2 нм. Продолжительность сушки таких материалов составляет минуты и даже десятки минут. Материалы четвертой группы, критический диаметр пор которых менее 2 нм, характеризуются очень низкой скоростью сушки, при этом продолжительность сушки исчисляется часами.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |