|
|||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Матрицы парных сравненийЦель лабораторной работы Знакомство с методами построения матрицы попарных сравнений и расчета ее собственного вектора. Теоритическая часть Матрицы парных сравнений После построения иерархии устанавливается метод сравнения ее элементов. Если принимается метод попарного сравнения, то строится множество матриц парных сравнений. Для этого в иерархии выделяют элементы двух типов: элементы-"родители" и элементы-"потомки". Элементы-"потомки" воздействуют на соответствующие элементы вышестоящего уровня иерархии, являющиеся по отношению к первым элементами-"родителями". Матрицы парных сравнений строятся для всех элементов-"потомков", относящихся к соответствующему элементу-"родителю". Элементами-"родителями" могут являться элементы, принадлежащие любому иерархическому уровню, кроме последнего, на котором расположены, как правило, альтернативы. Парные сравнения проводятся в терминах доминирования одного элемента над другим. Полученные суждения выражаются в целых числах с учетом девятибалльной шкалы.
Таблица 2.1 — Шкала оценки сравнения альтернатив Заполнение квадратных матриц парных сравнений осуществляется по следующему правилу. Если элемент Е1 доминирует над элементом Е2, то клетка матрицы, соответствующая строке Е1 и столбцу Е2, заполняется целым числом, а клетка, соответствующая строке E2 и столбцу Е1, заполняется обратным к нему числом. Если элемент Е2 доминирует над Е1, то целое число ставится в клетку, соответствующую строке Е2 и столбцу Е1, а дробь проставляется в клетку, соответствующую строке Е1 и столбцу Е2. Если элементы Е1 и Е2 равнопредпочтительны, то в обе позиции матрицы ставятся единицы. Для получения каждой матрицы эксперт или ЛПР выносит n(n-1)/2 суждений (здесь n — порядок матрицы парных сравнений). Рассмотрим в общем виде пример формирования матрицы парных сравнений. Пусть Е1, Е2,..., Еn — множество из n элементов (альтернатив) и v1, v2,...vn — соответственно их веса, или интенсивности. Сравним попарно вес, или интенсивность, каждого элемента с весом, или интенсивностью, любого другого элемента множества по отношению к общему для них свойству или цели (по отношению к элементу-"родителю"). В этом случае матрица парных сравнений [Е] имеет вид, изображенный в таблице 2.2.
Таблица 2.2 — Общий вид матрицы парных сравнений Матрица парных сравнений обладает свойством обратной симметрии, т. е. аij = 1/аji , где аij = vi/vj При проведении попарных сравнений следует отвечать на следующие вопросы: какой из двух сравниваемых элементов важнее или имеет большее воздействие, какой более вероятен и какой предпочтительнее. При сравнении критериев обычно спрашивают, какой из критериев более важен; при сравнении альтернатив по отношению к критерию — какая из альтернатив более предпочтительна или более вероятна. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |