|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Алгебраическое описание методаГеометрическое описание метода Хорд Будем искать корень функции f(x). Выберем две начальные точки C 1(x 1; y 1) и C 2(x 2; y 2) и проведем через них прямую. Она пересечет ось абсцисс в точке (x 3;0). Теперь найдем значение функции с абсциссой x 3. Временно будем считать x 3 корнем на отрезке [ x 1; x 2]. Пусть точка C 3 имеет абсцисcу x 3 и лежит на графике. Теперь вместо точек C 1 и C 2 мы возьмём точку C 3 и точку C 2. Теперь с этими двумя точками проделаем ту же операцию и так далее, т.е. будем получать две точки Cn + 1 и Cn и повторять операцию с ними. Таким образом мы будем получать две точки, отрезок, соединяющий которые, пересекает ось абсцисс в точке, значение абсциссы которой можно приближенно считать корнем. Эти действия нужно повторять до тех пор, пока мы не получим значение корня с нужным нам приближением. Алгебраическое описание метода Пусть x 1, x 2 − абсциссы концов хорды, y = kx + b − уравнение прямой, содержащей хорду. Найдем коэффициенты k и b из системы уравнений:
Вычтем из первого уравнения второе: f (x 1) − f (x 2) = k (x 1 − x 2), затем найдем коэффициенты k и b:
Уравнение принимает вид: Таким образом, теперь можем найти первое приближение к корню, полученное методом хорд: Теперь возьмем координаты x 2 и x 3 и повторим все проделанные операции, найдя новое приближение к корню. Повторять операцию следует до тех пор, пока xn − xn − 1 не станет меньше или равно заданному значению погрешности. Вычисления ведутся до тех пор, пока не выполнится неравенство Итерационная формула метода хорд имеет вид Рассмотрим метод деления отрезка пополам более подробно.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.034 сек.) |