|
|||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Кодовое расстояние и корректирующая способность кодаПод корректирующей способностью кода понимается его свойство обнаруживать и/или исправлять ошибку максимальной кратности q. Корректирующая способность кода связана с его кодовым расстоянием. Расстоянием dij между кодами (кодовыми комбинациями) i и j называется число различных разрядов в кодовых комбинациях i и j. Например, если есть коды 01 и 10, расстояние между ними равно 2: они различаются в двух разрядах. Кодовым расстоянием d для кода, содержащего m кодовых комбинаций, является минимальное расстояние между всеми парами кодовых комбинаций, т.е. , где i≠j, i=1,m; j=1,m.
Пусть есть кодовая таблица:
Тогда расстояния между кодовыми комбинациями имеют значения: dab = 1; dad = 2; dbd = 1; dac = 1; dbc = 2; dcd = 1. Отсюда следует: d = min{1, 2, 1, 1, 2, 1} = 1. Это означает, что всякая ошибка кратности 1 (и более) переводит исходную кодовую комбинацию в другую кодовую комбинацию, которая также принадлежит коду. Увеличить кодовое расстояние можно, введя в кодовые комбинации дополнительный разряд (или разряды). Тогда исходные разряды называют информационными, а дополнительный (или дополнительные) – проверочным (проверочными). Значение одного проверочного разряда в простейшем случае определяется как результат суммирования по модулю 2 информационных разрядов. Для кодов из приведенной выше таблицы введем дополнительный разряд и сформируем его значение. Результат показан ниже:
Таким образом, полученный код является трехразрядным. Определим кодовое расстояние полученного кода. Для этого вначале выясним расстояния между кодовыми комбинациями: dab = 2; dad = 2; dbd = 2; dac = 2; dbc = 2; dcd = 2. Тогда d = min{2, 2, 2, 2, 2, 2} = 2. Пусть передается кодовая комбинация, соответствующая символу c, – 101. Пусть на нее накладывается ошибка кратности 1. Возможные результаты искажения приведены в таблице:
В результате данной ошибки получаемые кодовые комбинации невозможно декодировать, так как они отсутствуют в результирующем коде (см. таблицу выше).
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |