АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод Шеннона-Фано

Читайте также:
  1. ABC-аналіз як метод оптимізації абсолютної величини затрат підприємства
  2. I. ПРЕДМЕТ И МЕТОД
  3. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  4. II. Документация как элемент метода бухгалтерского учета
  5. II. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ
  6. II. Методична робота.
  7. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  8. II. МЕТОДЫ, ПОДХОДЫ И ПРОЦЕДУРЫ ДИАГНОСТИКИ И ЛЕЧЕНИЯ
  9. III. Mix-методики.
  10. III. ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ КОНТРОЛЬНИХ РОБІТ .
  11. III. ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ
  12. III. Методы оценки функции почек

Этот метод требует упорядочения исходного множества символов по не возрастанию их частот. Затем выполняются следующие шаги:

а) список символов делится на две части (назовем их первой и второй частями) так, чтобы суммы частот обеих частей (назовем их Σ1 и Σ2) были точно или примерно равны. В случае, когда точного равенства достичь не удается, разница между суммами должна быть минимальна;

б) кодовым комбинациям первой части дописывается 1, кодовым комбинациям второй части дописывается 0;

в) анализируют первую часть: если она содержит только один символ, работа с ней заканчивается, – считается, что код для ее символов построен, и выполняется переход к шагу г) для построения кода второй части. Если символов больше одного, переходят к шагу а) и процедура повторяется с первой частью как с самостоятельным упорядоченным списком;

г) анализируют вторую часть: если она содержит только один символ, работа с ней заканчивается и выполняется обращение к оставшемуся списку (шаг д). Если символов больше одного, переходят к шагу а) и процедура повторяется со второй частью как с самостоятельным списком;

д) анализируется оставшийся список: если он пуст – код построен, работа заканчивается. Если нет, – выполняется шаг а).

Пример 1. Даны символы a, b, c, d с частотами fa = 0,5; fb = 0,25; fc = 0,125; fd = 0,125. Построить эффективный код методом Шеннона-Фано.

Сведем исходные данные в таблицу, упорядочив их по невозрастанию частот:

Исходные символы Частоты символов
a 0,5
b 0,25
c 0,125
d 0,125

Первая линия деления проходит под символом a: соответствующие суммы Σ1 и Σ2 равны между собой и равны 0,5. Тогда формируемым кодовым комбинациям дописывается 1 для верхней (первой) части и 0 для нижней (второй) части. Поскольку это первый шаг формирования кода, двоичные цифры не дописываются, а только начинают формировать код:

Исходные символы Частоты символов Формируемый код
a 0,5  
b 0,25  
c 0,125  
d 0,125  

В силу того, что верхняя часть списка содержит только один элемент (символ а), работа с ней заканчивается, а эффективный код для этого символа считается сформированным (в таблице, приведенной выше, эта часть списка частот символов выделена заливкой).

Второе деление выполняется под символом b: суммы частот Σ1 и Σ2 вновь равны между собой и равны 0,25. Тогда кодовой комбинации символов верхней части дописывается 1, а нижней части – 0. Таким образом, к полученным на первом шаге фрагментам кода, равным 0, добавляются новые символы:

Исходные символы Частоты символов Формируемый код
a 0,5  
b 0,25  
c 0,125  
d 0,125  

Поскольку верхняя часть нового списка содержит только один символ (b), формирование кода для него закончено (соответствующая строка таблицы вновь выделена заливкой).

Третье деление проходит между символами c и d: к кодовой комбинации символа c приписывается 1, коду символа d приписывается 0:

Исходные символы Частоты символов Формируемый код
a 0,5  
b 0,25  
c 0,125  
d 0,125  

Поскольку обе оставшиеся половины исходного списка содержат по одному элементу, работа со списком в целом заканчивается.

Таким образом, получили коды:

a - 1,

b - 01,

c - 001,

d - 000.

Определим эффективность построенного кода по формуле:

lср = 0,5*1 + 0,25*01 + 0,125*3 + 0,125*3 = 1,75.

Поскольку при кодировании четырех символов кодом постоянной длины требуется два двоичных разряда, сэкономлено 0,25 двоичного разряда в среднем на один символ.

 

Метод Хаффмена

Этот метод имеет два преимущества по сравнению с методом Шеннона-Фано: он устраняет неоднозначность кодирования, возникающую из-за примерного равенства сумм частот при разделении списка на две части (линия деления проводится неоднозначно), и имеет, в общем случае, большую эффективность кода.

Исходное множество символов упорядочивается по не возрастанию частоты и выполняются следующие шаги:

 

1) объединение частот:

· две последние частоты списка складываются, а соответствующие символы исключаются из списка;

· оставшийся после исключения символов список пополняется суммой частот и вновь упорядочивается;

· предыдущие шаги повторяются до тех пор, пока ни получится единица в результате суммирования и список ни уменьшится до одного символа;

2) построение кодового дерева:

· строится двоичное кодовое дерево: корнем его является вершина, полученная в результате объединения частот, равная 1; листьями – исходные вершины; остальные вершины соответствуют либо суммарным, либо исходным частотам, причем для каждой вершины левая подчиненная вершина соответствует большему слагаемому, а правая – меньшему; ребра дерева связывают вершины-суммы с вершинами-слагаемыми. Структура дерева показывает, как происходило объединение частот;

· ребра дерева кодируются: каждое левое кодируется единицей, каждое правое – нулем;

3) формирование кода: для получения кодов листьев (исходных кодируемых символов) продвигаются от корня к нужной вершине и «собирают» веса проходимых ребер.

Пример 1. Даны символы a, b, c, d с частотами fa = 0,5; fb = 0,25; fc = 0,125; fd = 0,125. Построить эффективный код методом Хаффмена.

1) объединение частот (результат объединения двух последних частот в списке выделен в правом соседнем столбце заливкой):

Исходные символы Частоты fs Этапы объединения
первый второй третий
a 0,5 0,5 0,5  
b 0,25 0,25 0,5  
c 0,125 0,25    
d 0,125      

2) построение кодового дерева:

3) формирование кода:

a - 1;

b - 01;

c - 001;

d - 000.

Как видно, полученные коды совпадают с теми, что были сформированы методом Шеннона-Фано, следовательно, они имеют одинаковую эффективность.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)