|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Регулятор частоты и активной мощности типа РЧМ-50
Электрический блок типа РЧМ-50 (рис. 2.5) является частью комбинированной системы регулирования генераторных агрегатов. Первичные двигатели (ПД) генераторных агрегатов укомплектованы штатными статическими регуляторами частоты (РЧ).
РЧМ-50 совместно с регулятором штатной системы обеспечивает следующие режимы: · устойчивую длительную автономную и параллельную работу однотипных агрегатов, оснащенных аналогичными регуляторами во всем диапазоне нагрузок от 0 до 110 %, а также в импульсном режиме как на статической, так и на динамической характеристиках; · стабилизацию частоты агрегата в статическом режиме при автономной и параллельной работе на уровне 50 Гц с точностью ± 0,2 % при изменении нагрузки на валу от 0 до 100 %; · максимальное изменение частоты не более 2 % от номинальной, а продолжительность восстановления частоты до номинальной с точностью ± 0,5 % не более 5 с при сбросах и набросах активной нагрузки, равной 100 % номинальной; · неравномерность распределения активной мощности в диапазоне нагрузок от 20 до 100 % суммарной мощности агрегатов не более 5 % номинальной мощности меньшего агрегата; · автоматический выход на работу на надсинхронной частоте до включения генераторного автомата с выдачей сигнала “Надсинхронные обороты”; · подгонку частоты агрегата к частоте судовой или береговой сети, лежащей в диапазоне 95…105 % номинальной со сдвигом 0,4 Гц; · разгрузку генератора до 0 по специальной команде перед его отключением.
В состав функциональной схемы системы автоматического регули- рования первичных двигателей генераторных агрегатов с РЧМ-50 входят датчик активного тока интегрального канала ДАТ-Р, датчик активного тока канала регулирования по нагрузке ДАТ-Н, частотно-импульсный модулятор ЧИМ, интегратор И; импульсный датчик частоты ИДЧ; блок питания БП1 и БП2; блок управления БУ, усилитель У. Интегратор И и усилитель У являются общими и используются во всех режимах работы агрегата. Для получения требуемых характеристик в динамических и статических режимах работы генераторного агрегата как при автономной, так и при параллельной работе в блоке РЧМ-50 объединены два канала регулирования: пропорционально-дифференциальный канал регулирования по возмущению (активной нагрузке) и интегральный канал регулирования по отклонению. Канал регулирования по возмущению включает в себя датчик активной мощности ДАТ-Н и при параллельной работе – уравнительную связь. Работа канала заключается в формировании сигнала, пропорционального активной мощности в статических режимах и форсированного в динамических. Данный канал обеспечивает астатическую характеристику агрегата по основному возмущению (активной нагрузке генератора) за счет воздействия электромагнита YА на систему топливоподачи агрегата. При автономной работе выходная координата электромагнита определяется выходным сигналом датчика тока ДАТ-Н, который прямо пропорционален активной нагрузке регулируемого агрегата. Выходной сигнал датчика тока ДАТ-Н поступает на вход электромагнита YА через усилитель У. Электромагнит YА входит в состав штатного регулятора частоты РЧ и представляет собой электромеханическое устройство, при работе которого обеспечивается пропорциональная зависимость между входным током управления и углом поворота якоря электромагнита. При параллельной работе синхронных генераторов с помощью уравнительной связи между регуляторами параллельно работающих агрегатов (контакты К6 замкнуты) на вход усилителя У поступает сигнал, пропорциональный средней мощности нагрузки в долях номинальной мощности. Для отключения канала регулирования по нагрузке применяются контакты реле К2, которые совместно с контактами реле К4 используются для перевода агрегата на работу по статической характеристике. Интегральный канал регулирования по отклонению участвует в трех режимах работы агрегата:режим стабилизации частоты,режим выхода на надсинхронную частоту, режим распределения активных нагрузок.
Режим стабилизации частоты. Этот режим имеет место как при автономной, так и при параллельной работе агрегата, когда регулируемый агрегат является базовым. Интегральный канал при работе агрегата в режиме стабилизации состоит из датчика частоты ИДЧ, интегратора И и усилителя У. Сигнал с ИДЧ в виде прямоугольных импульсов с частотой, равной разности частот агрегата и эталонной частоты, через замкнутые контакты реле К3 и К4 поступает на вход интегратора И. ИДЧ имеет два выхода. Если частота генератора больше эталонной, занят один выход, если меньше – то другой. Интегратор состоит из реверсивного счетчика, интегрирующего элемента и ЦАП. Два выхода с ИДЧ подсоединены к двух входам реверсивного счетчика. Со счетчика сигнал поступает на ЦАП. ЦАП преобразует двоичный код в аналоговый сигнал, который потом поступает на усилитель У. Полярность сигнала на выходе ЦАП будет зависеть от того, на какой вход счетчика (суммирующий или вычитающий) поступали импульсы от ИДЧ, т.е. от того, в каком направлении изменилась частота на выходе генератора в сторону увеличения или уменьшения по отношению к эталонной (номинальной). С выхода интегратора И сигнал поступает через реверсивный усилитель на электромагнит YА, который воздействует на систему топливоподачи до тех пор, пока частота не станет номинальной (эталонной). Как только это произойдет, сигнал с ИДЧ исчезнет и прекратится движение топливной рейки, она выйдет на новую координату. Активные мощности, генерируемая и потребляемая, выравниваются за счет изменения генерируемой мощности, поэтому частота в системе останется стабильной. Режим выхода на надсинхронную частоту. При работе генераторного агрегата с отключенным автоматом QF1 предусмотрен вывод агрегата на надсинхронную скорость, для того чтобы создать необходимые условия для синхронизации генератора перед его подключением на ГРЩ. Для выполнения этого режима на ИДЧ в качестве задающей частоты подается напряжение с эталонной частотой (50 Гц) плюс 0,4 Гц. Режим подгонки частоты перед синхронизацией. Этот режим работы выбирается перед подключением генератора на параллельную работу. В качестве задающей частоты на ИДЧ подается частота, равная частоте сети (на ГРЩ) плюс 0,4 Гц. Этот режим необходим для исключения «зависания» агрегата при синхронизации, а также для исключения двигательного режима. Состав интегрального канала при последних двух режимах остается тот же, что и при режиме стабилизации частоты. Работа канала в этих режимах не отличается от работы режима стабилизации частоты. Режим распределения активных нагрузок. Этот режим имеет место при параллельной работе генераторных агрегатов, когда регулируемый агрегат является ведомым. Интегральный канал при этом режиме состоит из датчика активного тока ДАТ-Р, частотно-импульсного модулятора ЧИМ, интегратора И и усилителя У. Подключение интегрального канала в этом режиме происходит переключением входа интегратора с выхода датчика частоты ИДЧ на выход частотно-импульсного модулятора ЧИМ при помощи контакта реле К5. Сигнал разности активных нагрузок формируется датчиком нагрузки ДАТ-Р и аналогичным датчиком базового генератора включением их на встречную полярность через уравнительные соединения. Сигнал с выхода схемы вычитания поступает на вход ЧИМ, который преобразует этот аналоговый сигнал в прямоугольные импульсы с частотой, пропорциональной величине аналогового сигнала на его входе. ЧИМ имеет два выхода, на то, какой выход будет занят, влияет полярность сигнала на входе ЧИМ, т. е. фактор перегрузки или недогрузки данного генератора по отношению к базовому. Форма сигнала на выходе ЧИМ точно такая же, как и на выходе ИДЧ. Сигнал с ЧИМ поступает на интегратор И и далее через усилитель У на электромагнит и топливную рейку. Движение топливной рейки приводит к выравниванию активных нагрузок между генераторами. Если в любом из указанных режимов работы интегрального канала счетчик выберет свой модуль, т.е. произойдет его переполнение, со специального выхода счетчика поступит команда на запуск серводвигателя, который начнет быстро двигать топливную рейку, и генерируемая мощность генератора будет быстро изменяться в ту или другую сторону. Такой процесс может произойти при резком и значительном падении частоты или при большом дефиците активной мощности в системе (например, при аварийном отключении генератора). Все необходимые операции, зависящие от режимов работы агрегата (автономная или параллельная работа, ведомый или базовый агрегат и т.п.), связанные с коммутацией указанных в структурной схеме реле К1…К7, определяются с помощью блока управления БУ оператором. Питание всех функциональных узлов регулятора осуществляется блоками питания БП1 и БП2. Подсоединение или отсоединение всех уравнительных связей происходит через блок-контакты силового автомата генератора. Режим автоматической разгрузки генератора. Этот режим выбирается перед отключением генератора для того, чтобы перевести нагрузку с отключаемого генератора на остающиеся генераторы. Так как базовый генератор отключать нельзя (не будет стабилизироваться частота в системе), то этот режим допустим только для ведомого генератора. При этом режиме сигнал, поступающий по уравнительной связи в канал распределения, заменяется нулевым. В результате на вход ЧИМ этого канала поступит все напряжение с ДАТ-Р данного генератора, так как встречное напряжение с ДАТ-Р базового генератора поступать не будет. Произойдет переполнение счетчика, получит питание серводвигатель и быстро прикроет топливную рейку. Это приведет к снижению частоты в системе, среагирует регулятор частоты базового генератора и увеличит топливо, поступающее на его первичный двигатель. Таким образом, произойдет перераспределение активной мощности между генераторами при стабильной частоте. Унификация РЧМ-50 применительно к различным мощностям агрегатов достигнута за счет введения масштабируемых устройств на входах датчиков тока ДАТ-Н и ДАТ-Р, а также наличия одного сменного узла усилителя У. Смена усилителя вызвана различием исполнительных органов, а также инерционных свойств разнотипных генераторных агрегатов. Существует три модификации электрического блока: РЧМ-50-Д, РЧМ-50-Г и РЧМ-50-П. Каждая из этих модификаций предназначена для работы соответственно с дизель-генераторами, газотурбогенераторами и паротурбогенераторами. В связи с тем, что диапазоны работы электромагнитов существующих систем автоматического регулирования агрегатов ограничены, было принято следующее решение. Сигналы всех каналов электрического блока РЧМ-50 через усилитель поступают на электромагнит; в случаях, когда зона электромагнита YA, выделенная на интегральное регулирование, исчерпывается, формируется сигнал подключения серводвигателя М. Это происходит тогда, когда разность частот достигает величины от –5 до +5 % номинальной частоты (при синхронизации и автоматической разгрузке). Серводвигатель М при этом изменяет поступление энергоносителя в том же направлении, что и электромагнит, управляемый интегратором И. В результате реакции всей динамической системы на работу серводвигателя М на входе интегратора И появляется сигнал, который выводит его из состояния насыщения (переполнения счетчика), вследствие чего серводвигатель М отключается. Поскольку отклонение регулируемых величин в системе с каналом по возмущению не велики, интегрирование является длительным процессом, и подключение серводвигателя М происходит крайне редко.
3. УНИФИЦИРОВАННЫЕ ФУНКЦИОНАЛЬНЫЕ УСТРОЙСТВА Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |