|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Гистограмма
Этот распространенный инструмент контроля качества используется для предварительной оценки дифференциатыюго закона распределения изучаемой случайной величины, однородности экспериментальных данных, сравнения разброса данных с допустимым, природы и точности изучаемого процесса. Гистограмма — это столбчатый график 1 (рис. 118), позволяющий наглядно представить характер распределения случайных величин в выборке. Для.ной же цели используют и полигон 2 (см. рис. 4.18) - ломаную линию, соединяющую серели мы полбцон гистограммы. *>] 30 (0,30) Гистограмма как метод представления статистических данных была предложена французским математиком А. Гэри в 1833 году. Он предложил использовать столбцовый график для анализа данных о преступности. Работа А. Гэри принесла ему медаль Французской академии, а его гистограммы стати стандартным инструментом для анализа и представления данных. Построение гистограммы производится следующим образом. Составляется план исследования, выполняются измерения, и результаты заносят в таблицу. Рассмотрим наиболее распространенные формы гистограмм (рис. 4.19) и попытаемся их связать с особенностями процесса (выборки, по которой построена гистограмма). Колоколообразное распределение (см. рис. 4.19, а) — симметричная форма с максимумом примерно в середине интервала изменения изучаемого параметра. Характерна для распределения параметра по нормальному закону, при равномерном влиянии на него различных факторов. Отклонения от колоколообразной формы могут указывать на наличие доминирующих факторов или нарушений методики сбора данных (например, включения в выборку данных, полученных в других условиях). Распределение с двумя пиками (двухвершинное) (см. рис. 4.19, б) характерно для выборки, объединяющей результаты двух процессов или условий работы. Например, если анализируются результаты измерений размеров деталей после обработки, такая гистограмма будет иметь место, если в одну выборку объединены измерения деталей при разных настройках инструмента или при использовании разных инструментов либо станков. Использование различных схем стратификации для выделения различных процессов или условий — один из методов дальнейшего анализа таких днных. Распределение типа плато (см. рис. 4.19, в) имеет место для тех же условий, что и предыдущая гистограмма. Особенностью данной выборки является то, что в ней объединено несколько распределений, в которых средние значения незначительно отличаются между собой. Распределение гребенчатого типа (см. риг. 4.19, /) - регулярно чередующиеся высокие и низкие значения. Этот тип обычно указывает на ошибки измерений, на ошибки в способе группировки данных при построении гистограммы или на систематическую погрешность в способе округления данных. Менее вероятна альтернатива того, что это один из вариантов распределения типа плато. Скошенное распределение (см. рис. 4.19, д) имеет асимметричную форму с пиком, расположенным не в центре данных, и с «хвостами» распределения, которые резко спадают с одной стороны, и мягко — с другой. Иллюстрация на рисунке называется положительно скошенным распределением, потому что длинный «хвост» простирается вправо к уменьшающимся значениям. Отрицательно скошенное распределение имело бы длинный «хвост», простирающийся влево к уменьшающимся значениям. Такая форма гистограммы указывает на отличие распределении изучаемого параметра от нормального. Оно может быть вызвано; • преобладающим влиянием какого-либо фактора на разброс значений параметра. Например, при механической обработке это может быть влияние точности заготовок или оснастки на точность обработанных деталей; • невозможностью получения значений больше или меньше определенной величины. Это имеет место для параметров с односторонним допуском (например, для показателей точности взаимного расположения поверхностей - биения, неперпендикулярности и др.), для параметров, у которых существует прими Такие распределения возможны, так как обусловлены природой получения выборок. Усеченное распределение (см. рис. 4.19, е) имеет асимметричную форму, при которой пик находится на краю или вблизи от края данных, а распределение с одной стороны обрывается очень резко и имеет плавный «хвост» с другой стороны. Обратите внимание, что усилия по усечению добавляют стоимость и, следовательно, это хорошие кандидаты на устранение. Распределение с изолированным пиком (см. рис. 4.19, ж) имеет небольшую, отдельную группу данных в дополнение к основному распределению. Как и распределение с двумя пиками, эта структура представляет собой некоторую комбинацию и предполагает, что работают два различных процесса. Однако маленький размер второго пика указывает на ненормальность, на что-то, что не происходит часто или регулярно. Посмотрите внимательно на условия, сопутствующие данным в маленьком пике: нельзя ли обособить конкретное время, оборудование, источник входных материалов, процедуру, оператора и т. д. Такие маленькие изолированные пики в сочетании с усеченным распределением могут быть следствием отсутствия достаточной эффективности отбраковки дефектных изделий. Возможно, что маленький пик представляет ошибки в измерениях или переписывании данных. Перепроверьте измерения и вычисления. Распределение с пиком на краю (см. рис. 4.19, з) имеет большой пик, присоединенный к гладкому в остальном распределению. Такая форма существует тогда, когда протяженный «хвост» гладкого распределения был обрезан и собран в одну-единственную категорию на краю диапазона данных. Кроме того, это указывает на неаккуратную запись данных (например, значения за пределами «приемлемого» диапазона записываются как всего лишь лежащие вне диапазона). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |