|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ТЕСЛА ОТВЕЧАЕТ Д-РУ ЛУИСУ ДУНКАНУ И ОБЪЯСНЯЕТ ДЕЙСТВИЕ МОТОРА ПЕРЕМЕННОГО ТОКА 8 страницаИз этих опытов я делаю вывод: для наибольшей износоустойчивости элемент накаливания в колбе должен иметь круглую форму и поверхность его должна быть хорошо отшлифована. Такой маленький шарик можно изготовить из алмаза или другого кристалла, но лучше всего оплавить при высокой температуре какой-либо оксид, например двуокись циркония, так, чтобы он принял вид капли, а затем поместить его в колбу при температуре ниже его точки плавления. Интересные и полезные результаты можно без сомнения получить в направлении крайней степени нагрева. Как можно получить такие высокие температуры? Как они достигаются в природе? При столкновениях небесных тел, при высоких скоростях и ударах. При столкновении можно достичь любой степени нагрева. Во время химического процесса мы ограничены. При соединении кислорода и водорода, они, образно говоря, падают с определенной высоты. Мы не можем достичь высокой температура при помощи газовой горелки, так же, как и при помощи печи, но в вакуумной колбе мы можем сконцентрировать любое количество энергии на маленьком элементе. Оставим практичность воплощения в стороне, и станет понятно, что таким способом, я полагаю, мы можем получить самую высокую температуру. Но тут мы сталкиваемся с огромной проблемой, а именно: тело распадается прежде, чем оплавится и образует каплю. Эта проблема существует в основном применительно к оксидам, таким, как двуокись циркония, так как их нельзя сжать настолько, чтобы они быстро не распались. Я неоднократно пытался оплавить двуокись циркония, помещая его в чашку или в угольную дугу, как показано на рисунке 23. Он светился очень ярко, и частицы, испускавшиеся из угольной чашки были заметно белого цвета; но независимо от того, был ли он сжат слоями или растерт в порошок с углем, он улетучивался раньше, чем плавился. Угольная чашка с двуокисью циркония помещалась очень низко в горловине большой колбы, так как нагрев стекла испускаемыми частицами оксида бал настолько быстрым, что во время первой попытки колба треснула мгновенно, как только пустили ток, нагрев стекла испускаемыми частицами всегда был сильнее, когда в угольной чашке содержалось вещество, которое быстро улетучивалось, полагаю потому, что в таких случаях, при одинаковом потенциале, достигаются более высокие скорости, а также потому, что за единицу времени улетучивается большее количество вещества — то есть, большее количество частиц ударяется о стекло. С указанной трудностью, однако, не столкнешься, если в угольную чашку поместить вещество, устойчивое к разрушению. Например, если оксид сперва расплавить в кислородной горелке, а затем поместить в колбу, он быстро плавился и принимал форму капли. В целом во время плавки были замечены прекрасные световые эффекты, которые трудно описать. Рисунок 23 должен проиллюстрировать эффект, наблюдавшийся с рубиновой каплей. Сначала можно наблюдать узкий столб белого света, который проецировался на верхнюю часть колбы и образовывал неровное световое пятно. Когда кончик рубина оплавляется, свечение становится очень мощным; но по мере того, как всё больше атомов испускается с поверхности капли, стекло нагревается и «устает» и теперь светится только кромка пятна. Таким образом формируется очень яркая и четко очерченная линия, соответствующая внешним очертаниям капли, и начинает медленно распространяться по колбе по мере того, как капля растет. Когда эта масса начинает кипеть, образуются пузырьки и небольшие пустоты, дающие на поверхности колбы темные пятна. Колбу можно, не боясь, перевернуть вверх дном, так как капля обладает вязкостью. Здесь я могу упомянуть еще одну интересную особенность, которую заметил в процессе проведения этих опытов, хотя это наблюдение и не переросло в уверенность. Мне показалось, что под воздействием ударов молекул, вызванных частыми колебаниями потенциала, элемент оплавился и оставался в таком состоянии в вакуумной колбе при температуре более низкой, чем была при нормальном давлении и нагреве в обычных условиях, по крайней мере, так мне показалось при том освещении. Один из опытов можно привести как иллюстрацию этого явления. Небольшой кусочек пемзы прикрепили к платиновому проводу и сперва приварили его газовой горелкой. Затем провод поместили между двух кусочков древесного угля и с помощью горелки создали интенсивный нагрев для того, чтобы расплавить кусочек пемзы до состояния стеклоподобной головки. Платиновый провод должен быть достаточно толстым, чтобы выдержать нагрев. При нагреве древесным углем и в пламени горелки пемза очень ярко светилась. Затем провод с головкой поместили в колбу и, откачав воздух, стали подавать ток, медленно наращивая его силу, чтобы не треснула головка. Головка нагрелась до точки плавления, и когда она расплавилась, она уже не светилась так ярко, как раньше, что говорит о более низкой температуре. Не беря в расчет возможную, и даже вероятную, ошибку наблюдателя, ставим вопрос, можно ли трансформировать предмет из твердого состояния в жидкое при меньшем количестве выделяемого света? Когда потенциал предмета часто колеблется, его структура непременно вибрирует. Если потенциал очень высок, хотя вибрации могут быть нечастыми, скажем, 20 000 в секунду, воздействие на структуру может быть значительным. Предположим, что путем постоянного энергетического воздействия рубин плавится в каплю. Когда формируется капля, она испускает видимые и невидимые волны, которые находятся в четком взаимодействии, а глазу будет видно, что капля обладает определенной яркостью. Предположим, что мы сократим до любого предела количество подаваемой энергии, а вместо этого будем подавать энергию, которая волнообразно изменяется в соответствии с определенным законом. Теперь, когда формируется капля, из нее будут испускаться три вида вибраций — обычные видимые и два вида невидимых волн, то есть обычные темные волны разных длин и вдобавок — волны вполне определенного характера. Последние не существуют при постоянной энергии, и всё же они помогают расшатать и ослабить структуру. Если бы было так, то рубиновая капля испускала бы сравнительно меньше видимых и больше невидимых волн, чем раньше. Так, кажется, когда платиновый провод плавится под воздействием переменного тока высокой частоты, он испускает в точке плавления меньше света и больше невидимого излучения, чем когда на него воздействует постоянный ток, хотя количество энергии, потребленное в процессе плавки, одинаково. Или другой пример, нить накаливания в лампе не способна работать так же долго при токах крайне высокой частоты, как при постоянных токах, при условии, что она одинаково ярко светится. Это означает, что при работе с переменным током, нить должна быть короче и толще. Чем выше частота, то есть чем больше разница между постоянным и переменным воздействием, тем хуже для нити. Но если бы требовалось продемонстрировать правдивость этого высказывания, то ошибочным был бы вывод о том, что такой элемент накаливания, какой используется в этих лампах, быстрее разрушается токами высокой частоты, чем низкой. По опыту могу сказать, что верно как раз обратное: головка лучше выдерживает бомбардировку токами высокой частоты. Это объясняется тем фактом, что высокочастотный разряд проходит сквозь разреженный газ гораздо свободнее, чем разряд низкочастотный или постоянного тока, и это говорит о том, что с первым мы можем работать при более низком потенциале, который производит более слабый удар. Таким образом, если газ для нас не имеет значения, постоянный или низкочастотный ток для нас предпочтительнее; но если действие газа желательно и важно, то требуются высокие частоты. В процессе проведения этих опытов было сделано много попыток работы с углеродными головками. Электроды, изготовленные из обычных углеродных головок, были определенно более прочными, если их делали с применением высокого давления. Электроды, которые получались хорошо известными способами, не давали таких результатов: от их воздействия колбы вскоре чернели. По результатам многих опытов я могу судить, что нити накаливания, изготовленные такими методами, хороши при работе только с постоянным или низкочастотным переменным током. Некоторые типы углерода такие прочные, что для того, чтобы довести их до точки плавления, головки приходилось делать очень маленькими. В таком случае очень трудно вести наблюдение по причине интенсивного нагревания. Тем не менее нет никакого сомнения в том, что все типы углерода плавятся при молекулярной бомбардировке, но в жидком состоянии он очень нестабилен. Из всех опробованных элементов два доказали свою наивысшую прочность — алмаз и карборунд. Их характеристики примерно одинаковы, но последний более предпочтителен по многим причинам. Поскольку, скорее всего, этот материал широко не известен, я позволю себе привлечь к нему ваше внимание. Его недавно изобрел г-н Е.-Г. Ачесон из города Мононгахила (штат Пенсильвания, США). Он предназначен для того, чтобы заменить алмазный порошок при шлифовке драгоценных камней и т. д. и мне сообщили, что он справляется с этой задачей вполне успешно. Я не знаю, почему его назвали «карборунд», может быть, есть что-то в процессе его изготовления. Благодаря любезности изобретателя, мне удалось недавно получить некоторое количество этого материала, который я намеревался испытать, изучив его способность к свечению и устойчивость к высоким температурам. Карборунд бывает двух видов — в виде кристалла и виде порошка. Первый темный, но очень яркий; второй почти такого же цвета, как алмазный порошок, но более мелкий. При осмотре под микроскопом образцы переданных мне кристаллов вроде бы не имели определенной формы, скорее напоминали кусочки яичной скорлупы отличного качества. Большинство из них были матовыми, но некоторые были прозрачными и разноцветными. Кристаллы похожи на углерод с вкраплениями; они очень твердые и долгое время выдерживают даже пламя кислородной горелки. Когда на них направлено пламя горелки, они сначала образуют слоистую компактную структуру, по-видимому, вследствие вкраплений. Эта масса долгое время может выдерживать пламя без последующего плавления; но по мере дальнейшей обработки выделяется стекловидный осадок, который, как я полагаю, есть расплавленный глинозем. При сильном сжатии кристаллы показывают хорошие качества, по не такие, как настоящий углерод. Порошок, который каким-то образом получают из кристаллов, практически не проводит ток. Это превосходный материал для шлифовки камней. У меня было слишком мало времени, чтобы провести удовлетворительные исследования свойств этого материала, но за несколько недель я получил достаточный опыт, чтобы сказать, что он обладает некоторыми замечательными свойствами. Он выдерживает крайне высокие температуры, слабо распадается при молекулярной бомбардировке и не пачкает колбу, как обычный углерод. Единственная сложность, с которой я столкнулся при его использовании во время опытов, — мне трудно было отыскать крепежный материал, который так же хорошо выдерживал бы нагрев и бомбардировку, как карборунд. Здесь у меня несколько ламп, в которых головки из карборунда. Для того чтобы изготовить такие головки, я поступаю следующим образом: я беру обычную нить накаливания и обмакиваю ее конец в деготь или иную вязкую жидкость, которая быстро обугливается. Затем я продеваю нить через кристаллы и держу вертикально над горячей пластиной. Деготь размягчается и образует каплю на конце нити, а кристаллы прилипают к капле. Регулируя расстояние до пластины, я высушиваю деготь, и головка становится твердой. Затем я еще раз обмакиваю головку в деготь и снова держу над пластиной, пока деготь не испарится, оставляя после себя только твердую субстанцию, которая крепко связывает кристаллы. Если требуется головка побольше, я повторяю процедуру несколько раз, а также покрываю нить кристаллами пониже головки. Когда головка помещается в колбу, при хорошей степени вакуумирования, сначала слабый, а потом сильный разряд пропускается через колбу для обугливания дегтя и устранения всех газов, а затем головка сильно накаляется. При использовании порошка лучше всего действовать так: я развожу плотный раствор карборунда и дегтя и пропускаю через него нить. Стерев после этого большую часть раствора при помощи замши, я держу нить над горячей плитой, пока деготь не испарится и покрытие не станет твердым. Я повторяю этот процесс столько раз, сколько надо, чтобы достичь нужной толщины покрытия. На конце нити я делаю головку так, как уже рассказал. Нет сомнения в том, что такая головка — правильно изготовленная под большим давлением — из карборунда, особенно из порошка хорошего качества, выдержит бомбардировку не хуже любого известного материала. Проблема в том, что крепежный материал не выдерживает и карборунд медленно уносится через некоторое время. Поскольку он нисколько не затемняет колбу, его полезно было бы использовать для покрытия нитей накаливания в обычных лампах, и я думаю, что из него даже можно изготавливать нити или стержни, которые заменят обычные нити накаливания. Покрытие из карборунда кажется более прочным, чем остальные, не только потому, что этот материал может держать высокую температуру, но и потому, что он, кажется, хорошо соединяется с углеродом, лучше, чем все остальные известные мне материалы. Покрытие из циркония или иного оксида разрушается гораздо быстрее. Я изготавливал головки из алмазной пыли таким же образом, как из карборунда, и они по прочности почти приблизились к нему, но связующий материал не выдержал гораздо быстрее; хотя это я склонен объяснить размером и неровностями зерен алмазов. Было интересно выяснить, обладает ли карборунд свойством фосфоресценции. Здесь, конечно, надо быть готовым к столкновению с двумя проблемами: во-первых, что касается сырья — кристаллов, они хорошие проводники, а как известно, проводники не светятся; во-вторых, порошок, если он очень мелкий, вряд ли хорошо продемонстрирует это свойство, поскольку мы знаем, что когда кристаллы, даже такие, как алмаз или рубин, растерты в мелкий порошок, они в значительной степени теряют способность к свечению. Здесь встает вопрос, может ли проводник фосфоресцировать? Что в теле, например в металле, есть такого, что лишает его способности к свечению, если только это не сама способность проводить ток? Ибо факт, что большинство светящихся предметов теряют эту способность, когда они нагреты достаточно, чтобы стать проводником. Тогда, если металл в основном, а может быть, и полностью, лишить этого свойства, он станет способен светиться. Следовательно, возможно, что при очень высоких частотах, когда он ведет себя как диэлектрик, металл или другой проводник, может демонстрировать способность к свечению, даже если он совершенно не способен светиться под воздействием низкочастотного разряда. Есть, однако, еще один способ, при котором проводник может демонстрировать, по крайней мере, кажущееся свечение. В настоящее время еще существуют значительные сомнения по поводу того, что такое свечение, или фосфоресценция, и все ли явления, объединенные этим понятием, вызваны одинаковыми причинами. Предположим, что в вакуумной колбе под ударами молекул поверхность металлического предмета или другого проводника сильно светится, но в то же время оказывается, что он относительно прохладный, можно ли такое свечение назвать фосфоресценцией? Такой результат, хотя бы и теоретически, возможен, так как это всего лишь вопрос потенциала и скорости. Предположим, что потенциал электрода, а следовательно, и скорость испускаемых атомов, достаточно высоки, тогда поверхность металлического тела, о которое ударяются атомы, станет раскаленной, поскольку процесс выработки тепла пойдет несравнимо быстрее, чем процесс излучения и отвода его с поверхности удара. На первый взгляд наблюдателя один удар атома вызовет мгновенную вспышку, но если удары будут повторяться с достаточной скоростью, они будут оказывать постоянное воздействие на сетчатку глаза, и тогда поверхность металла будет казаться постоянно раскаленной, равномерно интенсивно светящейся, в то время как на самом деле свет будет иметь прерывистый характер или, по крайней мере, будет периодически менять интенсивность. Металлический предмет нагреется до предела равновесия, до того уровня, когда энергия, которая излучается постоянно, будет равна энергии, подаваемой скачкообразно. Но подаваемой энергии может не хватить при таких условиях для того, чтобы довести нагрев до температуры выше среднего значения, особенно если частота ударов атомов очень низка и ее хватает только на то, чтобы глазу была незаметна флуктуация интенсивности излучаемого света. Тогда тело, соответственно характеру получаемой энергии, будет излучать сильное свечение, но находиться при этом на сравнительно низком температурном уровне. Как же может назвать наблюдатель свечение, происходящее при таких обстоятельствах? Даже если анализ света и даст ему что-то определенное, всё же он отнесет это явление к разряду фосфоресценции. Вероятно, таким образом и проводники и диэлектрики могут находиться в состоянии свечения определенной интенсивности, но количество энергии, необходимой для этого, будет варьироваться в зависимости от свойств материала. Эти и последующие высказывания приводятся для того, чтобы обозначить любопытные свойства переменного тока или электрических импульсов. С их помощью мы можем заставить тело излучать больше света при определенной средней температуре, чем если бы оно излучало при постоянной подаче энергии; а также мы можем довести тело до точки плавления и заставить его излучать меньше света, чем если бы это происходило при подаче энергии обычными средствами. Всё зависит от того, как мы подаем энергию и какие возбуждаем колебания: в одном случае колебаний больше, в другом — меньше, их количество соотносим с возможностями нашего зрения. Некоторые эффекты, ранее мной не наблюдавшиеся, полученные при первых опытах с карборундом, я приписывал фосфоресценции, но в последующих экспериментах выяснилось, что он лишен этого свойства. Кристаллы обладают интересным качеством. В колбе с одним электродом в форме небольшого металлического диска, например, при достижении определенного уровня вакуума электрод покрывается тонкой пленкой молочного цвета, которая отделена от свечения, наполняющего колбу, темным пространством. Если металлический диск покрыть кристаллами карборунда, то пленка имеет более интенсивный снежно-белый оттенок. Как я позже выяснил, это всего лишь свойство яркой поверхности кристаллов, ибо когда алюминиевый электрод хорошо отшлифован, он демонстрирует такие же качества. Я провел ряд опытов с полученными кристаллами в основном потому, что, было бы интересно обнаружить их способность к фосфоресценции по причине их токопроводи-мости. Я не смог получить отчетливое свечение, но вынужден сказать, что нельзя делать окончательных выводов до тех пор, пока не будут поставлены дальнейшие опыты. Порошок в ходе некоторых экспериментов вел себя так, как будто он содержал глинозем, но характерного красного оттенка не было. Его мертвенно-бледный цвет становится значительно ярче под ударами молекул, но теперь я убежден, что он не светится. И всё-таки окончательный вывод делать рано, так как порошкообразный карборунд ведет себя не как, например, флюоресцентный сульфид, который можно растереть в порошок, не лишив его таким способом свойства фосфоресцентности; карборунд ведет себя, скорее, как порошкообразный рубин или алмаз, и, следовательно, для того чтобы принять какое-то решение, надо получить его в форме большого куска и отполировать поверхность. Карборунд оказывается полезным в связи с этими и другими опытами, а его основное достоинство в том, что он хорош для производства покрытий, тонких проводников, головок и других электродов, способных выдерживать высокую температуру. Производство небольшого электрода, способного выдерживать громадные температуры, я рассматриваю как задачу чрезвычайной важности при получении света. Мы сможем при помощи токов высокой частоты получать в 20 раз большее количество света, чем то, которое мы получаем сейчас с помощью ламп накаливания, при том же уровне расходуемой энергии. Может показаться, что я преувеличиваю, но на самом деле ничуть. Так как это высказывание может быть неверно истолковано, я полагаю необходимым четко очертить проблему, с которой мы сталкиваемся, работая в этом направлении, и обозначить пути ее решения. Любой, кто начинает изучать эту проблему, склонен думать, что в лампе с электродом нам надо достичь высокой степени накала последнего. Это ошибка. Высокая степень накала головки — это необходимое зло, но на самом деле нам нужна высокая степень свечения газа вокруг головки. Иными словами, задача в том, чтобы заставить газ светиться как можно ярче. Чем ярче свечение, тем быстрее средняя вибрация и тем больше экономия при производстве света. Но для того чтобы поддерживать высокую интенсивность свечения газа в стеклянном сосуде, нам нужно изолировать его от стекла; то есть сконцентрировать его как можно плотнее в центре колбы. Во время одного из опытов, показанных нынче вечером, в середине провода формировался кистевой разряд. Эта кисть была пламенем, источником света и тепла. Она не вырабатывала много тепла и не светилась ярким светом, но стало ли от этого ее пламя меньше и не жгло мне руку? Меньше ли ее пламя от того, что яркость не слепит мои глаза? Задача в том, чтобы внутри колбы получить такое пламя, меньшее по размеру, но несравнимо более мощное. Если бы у нас были средства для производства электрических импульсов высокой частоты и их передачи, от колбы можно было бы отказаться, может быть, оставив ее только для защиты электрода или экономии энергии при помощи концентрации тепла. Но поскольку таких средств нет, то приходится заводить вывод внутрь лампы и разряжать в ней воздух. Это делается только для того, чтобы устройство могло функционировать так, как оно не может при обычном давлении. Внутри лампы мы можем усилить процесс до любой степени — настолько, что кисть начнет излучать мощный свет. Интенсивность света зависит от частоты и потенциала импульсов, а также от электрической плотности на поверхности электрода. Очень важно использовать самую маленькую головку, чтобы максимально увеличить плотность. Интенсивные удары молекул газа, конечно, очень сильно нагревают маленький электрод, но вокруг него создается воспламененная фотосфера, объемом в сотни раз больше него. Если применяются алмазные, карборундовые или циркониевые головки, то фотосфера может превышать объем головки в тысячу раз. Некоторые могут подумать, что при отсутствии отражения доведенный до крайней степени накала электрод испарится. Но по размышлении, можно прийти к выводу, что теоретически этого не должно случиться, и в этом факте, который, кстати, экспериментально доказан, заключается основное достоинство этой лампы в будущем. В начале бомбардировки большая часть воздействия оказывается на головку, но когда вокруг нее формируется проводящая фотосфера, нагрузка с головки частично снимается. Чем выше степень накала фотосферы, тем более она по проводимости приближается к электроду и, следовательно, газ и твердый проводник образуют единое целое. В результате — чем далее развивается накаливание, тем большее воздействие оказывается на газ и меньшее — на проводник. Формирование фотосферы, следовательно, и есть средство защиты электрода. Эта защита, конечно, относительна, и не следует думать, что чем выше степень накала, тем меньше портится проводник. И всё же, теоретически, при крайне высоких частотах этот результат должен быть Достигнут, но, возможно, при температуре более высокой, чем та, которую способны выдерживать все известные нам элементы накаливания. Тогда, при наличии такого электрода, который может выдерживать крайне высокую степень бомбардировки и внешнего напряжения, он будет в безопасности независимо от того, насколько запредельными будут нагрузки. В лампе накаливания действуют другие правила. Здесь газ не имеет значения: вся нагрузка ложится на нить, и срок службы лампы уменьшается настолько быстро по мере увеличения степени накала, что мотивы экономии заставляют нас эксплуатировать ее при низкой степени накала. Но если лампа накаливания работает на высокой частоте, то действием газа нельзя пренебрегать, и правила наиболее экономичного режима работы должны меняться. Для того чтобы довести лампу с одним или двумя электродами до совершенства, необходимо использовать высокочастотные импульсы. Среди прочего — высокая частота обеспечивает два основных преимущества, влияющих на экономичное производство света. Во-первых, разрушение электрода замедляется вследствии того, что мы задействуем много слабых ударов вместо нескольких сильных, которые быстро подрывают структуру материала; во-вторых, облегчается формирование фотосферы. Для того чтобы свести к минимуму разрушение электрода, желательно получить гармонические вибрации, ибо любая внезапность ускоряет процесс разрушения. Срок службы электрода гораздо больше, если в состоянии накала он поддерживается токами, получаемыми от генератора переменного тока, обеспечивающего более или менее гармонические колебания, чем те, что дает разрядная катушка. В последнем случае наибольший вред наносят внезапные разряды. Одна из составляющих потерь в такой лампе — это бомбардировка колбы. Так как потенциал очень высок, испускаемые молекулы движутся с огромной скоростью; они ударяются о стекло и обычно вызывают сильную фосфоресценцию. Производимый эффект обычно очень красив, но с точки зрения экономии возможно стоило бы предотвратить или хотя бы свести к минимуму бомбардировку колбы, так как в таком случае, как правило, цель заключается не в фосфоресценции. Эти потери в основном зависят от потенциала импульсов и электрической плотности на поверхности электрода. При использовании очень высоких частот потери энергии от бомбардировки сильно уменьшаются, ибо, во-первых, потенциал, необходимый для выполнения определенной работы, гораздо ниже; а во-вторых, когда вокруг электрода формируется фотосфера, это имеет такой же результат, как если бы электрод был гораздо больше, что означает меньшую электрическую плотность. Но в силу ли уменьшения потенциала или плотности, результат достигается в направлении избегания сильных ударов, которые деформируют стекло за пределами его эластичности. Если бы частоту можно было достаточно увеличить, то потери, связанные с недостаточной эластичностью стекла, можно было бы считать ничтожными. Потери от бомбардировки колбы можно, однако, уменьшить применив два электрода вместо одного. В этом случае каждый электрод можно соединить с одним из выводов; или, если предпочтительнее использовать один провод, один электрод можно соединить с выводом, а второй с землей или с каким-то предметом определенной площади, например абажуром лампы. В последнем случае, если не обдумать всё заранее, один из электродов будет светиться ярче другого. Но в целом я считаю более целесообразным при работе с высокой частотой использовать только один провод и один электрод. Я убежден, что осветительный прибор ближайшего будущего для своей работы не потребует более одного соединительного провода, и в конечном счете не будет иметь подводящего провода, поскольку необходимая энергия может передаваться сквозь стекло. В опытных лампах подводящий провод в основном применяется для удобства, поскольку использование конденсирующих покрытий так, как показано на рисунке 22, например, связано с трудностью установки деталей, но она преодолима, если будут изготовлены тысячи ламп, иначе энергию можно передавать сквозь лампу точно так же, как и по проводу, при высоких частотах потери очень малы. Такие осветительные приборы, несомненно, потребуют высоких потенциалов, и в глазах практичных людей это может выглядеть как недостаток. На самом же деле использование высокого потенциала — это ни в коем случае не недостаток, если это касается безопасности прибора. Есть два способа обеспечить безопасность электроприбора. Первый — использовать низкий потенциал, второй — таким образом определить габариты устройства, что оно будет безопасным независимо от того, насколько высокий потенциал в нем применяется. Из этих двух последний кажется мне наилучшим, так как в этом случае достигается абсолютная безопасность, и она не зависит от стечения обстоятельств, которые могут даже прибор низкого напряжения сделать опасным для жизни и собственности. Но практичность требует не только разумного определения габаритов аппарата, но необходимости использования правильного вида энергии. Нетрудно, к примеру, построить трансформатор, способный выдавать при работе от низковольтового генератора, скажем, 50 000 вольт, что требуется для свечения вакуумной трубки, так что, несмотря на высокий потенциал, она абсолютно безопасна, и ее удар не причиняет никаких неудобств. Всё же такой трансформатор был бы очень дорогим и сам по себе неэффективен, а кроме того тот тип энергии, который он вырабатывает, непригоден для экономичного производства света. Экономия требует применения энергии крайне частых колебаний. Проблема производства света подобна проблеме получения высокой ноты при помощи колокола. Назовем ее еле слышной нотой; и даже эти слова не дадут точного значения, настолько удивительна чувствительность глаза. Мы можем наносить сильные удары с большими промежутками, израсходовать много энергии, и всё-таки не получить того, чего хотели; а можем держать ноту при помощи частых легких шлепков и приблизиться к цели больше, расходуя энергии меньше. При производстве света, что касается осветительных приборов, применимо только одно правило, а именно: использовать как можно более высокую частоту, но средства производства и передачи импульсов такого характера накладывают на нас, по крайней мере в настоящее время, большие ограничения. Если принято решение использовать высокую частоту, обратный провод становится не нужен и вся аппаратура упрощается. С применением очевидных средств достигается такой же результат, как если бы использовался обратный провод. Для этого достаточно прикоснуться в лампе или поднести к ней изолированный предмет определенной площади. Конечно, площадь его тем меньше, чем выше частота и потенциал; и тем выше экономия срока службы лампы или другого устройства. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.012 сек.) |