|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Построение кривых свободной поверхности. i0<iк, h0>hкр. РИСУНОК (лекции прошлый год) - h>h0 и k>k0, => числитель > 0, и Пк<1 – знаменатель >0. => - функция возрастает – глубина возрастает вниз по течению – кривая подпора а1. - h<h0 и h>hкр, k<k0, => числитель <0, и Пк<1 – знаменатель >0, => - глубина потока уменьшается вниз по течению – выпуклая кривая спада b1. - h<hкр, h<h0, k<k0, Пк>1 –числитель и знаменатель <0, => - глубина потока возрастает вниз по течению – вогнутая кривая подпора с1. i0>iк. h0<hкр РИСУНОК (лекции прошлый год) - h>hкр, h>h0 и k>k0, Пк<1 – числитель и знаменатель <0, => - происходит подпор – кривая подпора а2. - h>h0, h<hкр, k>k0, Пк>1 – числитель >0, знаменатель <0, => - глубина уменьшается вниз по течению – кривая спада b2. - h<h0, k<k0, Пк>1 – числитель и знаменатель <0, => - глубина потока возрастает вниз по течению – кривая подпора с2. i0=iк,h0=hкр. РИСУНОК(лекции прошлый год) - h>h0 и k>k0, Пк<1 – числитель и знаменатель >0, => - глубина возрастает вниз по течению - прямая а3. - h<hкр, k<k0, Пк>1, => - кривая подпора, с3 –прямая.
2.Типы задач на неравномерное движение. Первый тип: известны глубины h1 и h2, требуется определить расстояние l между этими сечениями. В зависимости от уклона дна потока l определяется по формулам: При прямом уклоне: , При нулевом уклоне: , При обратном уклоне: . Для определяем , , , , , . Второй тип: известна глубина в одном из сечений (2-2), задано расстояние l между сечениями, необходимо определить глубину в сечении 1-1. решение методом последовательных приближений. Преобразуем: . Задаваясь произвольными h1, определяем левую часть уравнения. Далее задаваясь величиной η1, определяем φ(η1), подставляем в правую часть, пока уравнение не превратится в тождество. -> h1= η1h0 – первое приближение.
3.Определение длины кривой свободной поверхности потока при неравномерном движении по уравнению Бахметева. Для русла с положительным уклоном дна: , где . После преобразования: , где . Выразим коэффициент Шези по формуле Маннинга, тогда: . Для широких и неглубоких русел В=Х, R=h. . При этом дифференциальное уравнение примет вид: . После ряда последовательного разделения переменных и интегрирования, получим: . Для дна с горизонтальным руслом дна: равномерного движения не может быть, поэтому нормальная глубина отсутствует. После интегрирования получим: .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |