|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Вопрос 8
Температура как экологический фактор Все химические процессы, протекающие в организме, зависят от температуры. Изменения тепловых условий, часто наблюдаемые в природе, глубоко отражаются на росте, развитии и других проявлениях жизнедеятельности животных и растений. Различают организмы с непостоянной температурой тела - пойкилотермные и организмы с постоянной температурой тела - гомойтермные. Пойкилотермные животные целиком зависят от температуры окружающей среды, тогда как гомойтермные способны поддерживать постоянную температуру тела независимо от изменений температуры окружающей среды. Подавляющее большинство наземных растений и животных в состоянии активной жизнедеятельности не переносит отрицательной температуры и погибает. Верхний температурный предел жизни неодинаков для разных видов - редко выше 40-45 оС. Некоторые цианобактерии и бактерии обитают при температурах 70-90 оС, в горячих источниках могут жить и некоторые моллюски (до 53 оС). Для большинства наземных животных и растений оптимум температурных условий колеблется в довольно узких пределах (15-30 оС). Верхний порог температуры жизни определяется температурой свертывания белков, поскольку необратимое свертывание белков (нарушение структуры белков) возникает при температуре около 60 oС. Пойкилотермные организмы в процессе эволюции выработали различные приспособления к изменяющимся температурным условиям среды. Главным источником поступления тепловой энергии у пойкилотермных животных - внешнее тепло. У пойкилотермных организмов выработались различные приспособления к низкой температуре. Некоторые животные, например, арктические рыбы, обитающие постоянно при температуре -1,8 oС, содержат в тканевой жидкости вещества (гликопротеиды), препятствующие образованию кристаллов льда в организме; у насекомых накапливается для этих целей глицерин. Другие животные, наоборот, увеличивают теплопродукцию организма за счет активного сокращения мускулатуры - так они повышают температуру тела на несколько градусов. Третьи регулируют свой теплообмен за счет обмена тепла между сосудами кровеносной системы: сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи и несущими охлажденную кровь (такое явление свойственно холодноводным рыбам). Адаптивное поведение проявляется в том, что многие насекомые, рептилии и амфибии выбирают места на солнце для обогрева или меняют различные позы для увеличения поверхности обогрева. У ряда холоднокровных животных температура тела может меняться в зависимости от физиологического состояния: к примеру, у летающих насекомых внутренняя температура тела может подниматься на 10-12 oС и более вследствие усиленной работы мышц. У общественных насекомых, особенно у пчел, развился эффективный способ поддержания температуры путем коллективной терморегуляции (в улье может поддерживаться температура 34-35 oС, необходимая для развития личинок). Пойкилотермные животные способны приспосабливаться и к высоким температурам. Это происходит также разными способами: теплоотдача может происходить за счет испарения влаги с поверхности тела или со слизистой верхних дыхательных путей, а также за счет подкожной сосудистой регуляции (например, у ящериц скорость тока крови по сосудам кожи увеличивается при повышении температуры). Наиболее совершенная терморегуляция наблюдается у птиц и млекопитающих - гомойтермных животных. В процессе эволюции они приобрели способность поддерживать постоянную температуру тела благодаря наличию четырехкамерного сердца и одной дуги аорты, что обеспечило полное разделение артериального и венозного кровотока; высокого обмена веществ; перьевого или волосяного покрова; регуляции теплоотдачи; хорошо развитой нервной системы приобрели способность к активной жизни при разной температуре. У большинства птиц температура тела несколько выше 40 oС, а у млекопитающих - несколько ниже. Весьма важное значение для животных имеет не только способность к терморегуляции, но и адаптивное поведение, постройка специальных убежищ и гнезд, выбор места с более благоприятной температурой и т.п. Они также способны приспосабливаться к низким температурам несколькими путями: кроме перьевого или волосяного покрова, теплокровные животные с помощью дрожи (микросокращения внешне неподвижных мышц) уменьшают теплопотери; при окислении бурой жировой ткани у млекопитающих образуется дополнительная энергия, поддерживающая обмен веществ. Приспособление теплокровных к высоким температурам во многом сходно с аналогичными приспособлениями холоднокровных - потоотделение и испарение воды со слизистой рта и верхних дыхательных путей, у птиц - только последний способ, так как у них нет потовых желез; расширение кровеносных сосудов, расположенных близко к поверхности кожи, что усиливает теплоотдачу (у птиц этот процесс протекает в неоперенных участках тела, например через гребень). Температура, как и световой режим, от которого она зависит, закономерно меняется в течение года и в связи с географической широтой. Поэтому все приспособления более важны для обитания при отрицательных температурах.
Вопрос 9. Вода как экологический фактор Вода играет исключительную роль в жизни любого организма, поскольку она является структурным компонентом клетки (на долю воды приходится 60-80% массы клетки). Значение воды в жизни клетки определяется ее физико-химическими свойствами. Вследствие полярности молекула воды способна притягиваться к любым другим молекулам, образуя гидраты, т.е. является растворителем. Многие химические реакции могут протекать происходить только в присутствии воды. Вода является в живых системах “тепловым буфером”, поглощая тепло при переходе из жидкого состояния в газообразное, тем самым предохраняя неустойчивые структуры клетки от повреждения при кратковременном освобождении тепловой энергии. В связи с этим она производит охлаждающий эффект при испарении с поверхности и регулирует температуру тела. Теплопроводные свойства воды определяют ее ведущую роль терморегулятора климата в природе. Вода медленно нагревается и медленно охлаждается: летом и днем вода морей океанов и озер нагревается, а ночью и зимой также медленно охлаждается. Между водой и воздухом происходит постоянный обмен углекислым газом. Кроме того, вода выполняет транспортную функцию, перемещая вещества почвы сверху вниз и обратно. Роль влажности для наземных организмов обусловлена тем, что осадки распределяются на земной поверхности в течение года неравномерно. В засушливых районах (степи, пустыни) растения добывают себе воду с помощью сильно развитой корневой системы, иногда очень длинных корней (у верблюжьей колючки - до 16 м), достигающих влажного слоя. Высокое осмотическое давление клеточного сока (до 60-80 атм), увеличивающее сосущую силу корней, способствует удержанию воды в тканях. В сухую погоду растения снижают испарение воды: у пустынных растений утолщаются покровные ткани листа, либо на поверхности листьев развивается восковой слой или густое опушение. Ряд растений достигает снижения влаги уменьшением листовой пластинки (листья превращаются в колючки, часто растения полностью теряют листья - саксаул, тамариск и др.). В зависимости от требований, предъявляемых к водному режиму, среди растений различают следующие экологические группы: Гидратофиты – растения постоянно живущие в воде; Гидрофиты- растения лишь частично погружаемые в воду; Гелофиты- болотные растения; Гигрофиты- наземные растения, обитающие в чрезмерно увлажненых местах; Мезофиты- предпочитают умеренное увлажнение; Ксерофиты- растения, приспособленные к постоянном недостатку влаги; среди ксерофитов различают: суккуленты- накапливающие воду в тканях своего тела (сочные); склерофиты- теряющие значительное количество воды. Многие животные пустынь способны обходиться без питьевой воды; некоторые быстро и долго могут бегать, совершая длинные миграции на водопой (сайгаки, антилопы, верблюды и др.); часть животных добывает воду из пищи (насекомые, пресмыкающиеся, грызуны). Жировые отложения пустынных животных могут служить своеобразным резервом воды в организме: при окислении жиров образуется вода (отложения жира в горбе верблюдов или подкожные отложения жира у грызунов). Малопроницаемые покровы кожи (например, у пресмыкающихся,) защищают животных от потери влаги. Многие животные перешли к ночному образу жизни или скрываются в норах, избегая иссушающего действия низкой влажности и перегрева. В условиях периодической сухости ряд растений и животных переходят в состояние физиологического покоя - растения приостанавливают рост и сбрасывают листья, животные впадают в спячку. Эти процессы сопровождаются пониженным обменом веществ в период сухости.
Вопрос 10. Рельеф. Рельефом (формами рельефа) называют совокупность неровностей земной поверхности разного масштаба. Различают выпуклые (положительные) формы рельефа и вогнутые (отрицательные) формы. Рельеф сформировался в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) геологических процессов. По размерам рельеф делят на макрорельеф, мезорельеф и микрорельеф. Макрорельеф — формы рельефа с разностью высот от десятков до тысяч метров (горы, равнины, возвышенности, речные долины и др.). Мезорельеф — формы рельефа с разностью высот в пределах 10—20 м (холмы, лощины, долины, террасы, склоны разной крутизны, овраги, балки и др.). Микрорельеф — формы рельефа с разностью высот от нескольких сантиметров до 1 м (бугорки, западины, борозды, кочки, небольшие промоины и др.). Рельеф оказывает косвенное воздействие на живые организмы, перераспределяя солнечную радиацию и осадки в зависимости от экспозиции и крутизны склонов. Так в северном полушарии на южных склонах произрастают более светолюбивые и теплолюбивые растения, чем на северных, в понижениях обитают более требовательные к влаге растения и т.д.
Вопрос 11. Эдафические (почвенно-грунтовые) экологические факторы. Важнейшими экологическими факторами, характеризующими почву как среду обитания, являются кислотность, содер- жание питательных элементов, содержание органических веществ, структура, плотность, засоленность, гранулометрический состав и др. По отношению к кислотности почвы растения делят на следующие экологические группы: ацидофилы (растут на почвах с рН<6,7); нейтрофилы (рН=6,7...7,0); базифилы (рН>7,0); индифферентные виды (могут обитать на почвах с разным значением pH). По отношению к содержанию питательных элементов в почве среди растений различают олиготрофов (растения, довольствующиеся малым количеством зольных элементов), эвтрофов (нуждаются в большом количестве зольных элементов) и мезотрофов (требуют умеренного количества зольных элементов). По другим признакам среди растений выделяют такие группы как галофиты (растения засоленных почв), нитрофилы (растения, предпочитающие почвы, богатые азотом), литофиты, / или петрофиты (растения каменистых почв), псаммофиты (ра-' стения песков). По степени связи с почвой как средой обитания животных объединяют в три экологические группы. Геобионты — животные, постоянно обитающие в почве, весь цикл развития которых протекает в почвенной среде. Геофилы — животные, часть цикла развития которых (чаще одна из фаз) обязательно проходит в почве. Геоксены — животные, иногда посещающие почву для временного укрытия или убежища. Вопрос 12. Анабиоз наблюдается при резком ухудшении некоторых условий существования (низкая температура, отсутствие влаги и др.) у организмов, стоящих на разных ступенях развития; при наступлении благоприятных условий происходит восстановление нормального уровня жизненных процессов — «оживление». Т. о., Анабиоз — биологическое приспособление организма к неблагоприятным внешним условиям, выработанное в процессе эволюции. Вирусные частицы (вирионы) вне бактериальных, растительных или животных клеток находятся в состоянии Анабиоз (вироспоры), хорошо перенося при этом охлаждение, высушивание и др. неблагоприятные воздействия. Широко распространён Анабиоз и среди микроорганизмов. Наиболее стойки к высушиванию, охлаждению, нагреванию спорообразующие бактерии и микроскопические грибы. Споры сибиреязвенной палочки долгие годы не теряют жизнеспособности ни в сухой почве пустынь, ни в замёрзшей почве арктической тундры. Многие бактерии, не образующие спор, жизнеспособны даже после длительного охлаждения, что позволяет выделять их чистые культуры из трупов и др. объектов (в обычных условиях этому препятствует присутствие др. микрофлоры). У многих организмов угнетение жизнедеятельности и её почти полная остановка вошли в нормальный цикл развития (семена, споры, цисты). Типичным примером Анабиоз при высушивании (ангидробиозе) служит т. н. скрытая жизнь семян многих растений, которые могут в сухом состоянии сохранять всхожесть 50 лет и долее. Анабиоз у животных был открыт Анабиоз Левенгуком (1701). Беспозвоночные — гидры, черви, усоногие раки, водные и наземные моллюски, некоторые насекомые, а из позвоночных — земноводные и пресмыкающиеся, впадая в Анабиоз, могут терять 1/2 и даже 3/4 заключённой в их тканях воды. С Анабиоз при замерзании имеет много общего зимняя спячка млекопитающих, а с Анабиоз при обезвоживании — их летняя спячка. Русский учёный П. И. Бахметьев и ряд советских исследователей установили закономерности, характеризующие Анабиоз при замерзании насекомых и млекопитающих. Как показали опыты по охлаждению мелких животных до —90, —160°С, оживление животных, впавших в Анабиоз, наступает только тогда, когда тканевые жидкости остаются при низкой температуре в переохлажденном, т. е. жидком, состоянии, что возможно при мгновенном переходе воды в стекловидную аморфную массу. При образовании кристаллов льда, разрушающих структуру клеток и белковых молекул, оживление невозможно. Явлением Анабиоз при высушивании и охлаждении пользуются для изготовления сухих живых вакцин, длительного сохранения культур бактерий, вирусов и клеток опухолей, консервирования различных тканей и органов (кровь, хрящ, кость, сосуды и др.), необходимых для пересадок. Явление Анабиоз приобретает особый интерес в связи с успехами в области хирургических вмешательств на сердце, лёгких, мозге, что зачастую требует охлаждения организма оперируемого (см. Гипотермия), а также с перспективами освоения космического пространства (Анабиоз повышает сопротивляемость организмов воздействию факторов космического полёта) и достижениями в искусственном осеменении с.-х. животных (использование спермы ценных производителей, сохранённой при низких температурах).
Вопрос 13. Биологические ритмы представляют собой периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. Они в той или иной форме присущи всем живым организмам и отмечаются на всех уровнях организации: от внутриклеточных процессов до биосферных. Биологические ритмы наследственно закреплены и являются следствием естественного отбора и адаптации организмов. Ритмы бывают внутрисуточные, суточные, сезонные, годичные, многолетние и многовековые. Примерами биологических ритмов являются: ритмичность в делении клеток, синтезе ДНК и РНК, секреции гормонов, суточное движение листьев и лепестков в сторону Солнца, осенние листопады, сезонное одревеснение зимующих побегов, сезонные миграции птиц и млекопитающих и т.д. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |