АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проверка. Чтобы определить, принимается гипотеза или нет, нужно, во-первых, рассчитать ошибку между точками заданной экспериментальной и полученной теоретической

Читайте также:
  1. V. Проверка жизнью избирательных лозунгов
  2. VI. Проверка статистических гипотез, критерий Стьюдента
  3. VII. Проверка статистических гипотез, критерий Хи-квадрат
  4. Аудит учредительных документов. Проверка формирования уставного капитала
  5. Вопрос 2 Проверка и оценка в задачах со случайными процессами на примере решения задач экозащиты, безопасности и риска.
  6. Выездная налоговая проверка
  7. Выездная налоговая проверка
  8. Выездная налоговая проверка, ее назначение и порядок проведения
  9. Глава 24. Проверка показаний на месте
  10. Для обеспечения постоянной надежности работы устройств молниезащиты ежегодно перед началом грозового сезона производится проверка и осмотр всех устройств молниезащиты.
  11. Заключительные работы и проверка результатов цементирования
  12. Камеральная налоговая проверка

Чтобы определить, принимается гипотеза или нет, нужно, во-первых, рассчитать ошибку между точками заданной экспериментальной и полученной теоретической зависимости и суммарную ошибку:

Ei = (Yi Эксп.Yi Теор.), i = 1, …, n

И, во-вторых, необходимо найти значение σ по формуле , где F — суммарная ошибка, n — общее число экспериментальных точек.

Если в полосу, ограниченную линиями Y Теор.S и Y Теор. + S (рис. 2.5), попадает 68.26% и более экспериментальных точек Yi Эксп., то выдвинутая нами гипотеза принимается. В противном случае выбирают более сложную гипотезу или проверяют исходные данные. Если требуется б о льшая уверенность в результате, то используют дополнительное условие: в полосу, ограниченную линиями Y Теор. – 2 S и Y Теор. + 2 S, должны попасть 95.44% и более экспериментальных точек Yi Эксп..

 

Рис. 2.5. Исследование допустимости принятия гипотезы

Расстояние S связано с σ следующим соотношением:

S = σ /sin(β) = σ /sin(90° – arctg(A 1)) = σ /cos(arctg(A 1)),

что проиллюстрировано на рис. 2.6.

 

Рис. 2.6. Связь значений σ и S

Условие принятия гипотезы выведено из нормального закона распределения случайных ошибок (см. рис. 2.7). P — вероятность распределения нормальной ошибки.

 

 

Рис. 2.7. Иллюстрация закона нормального распределения ошибок

Наконец, приведем на рис. 2.8 графическую схему реализации одномерной линейной регрессионной модели.

 

Рис. 2.8. Схема реализации метода наименьших квадратов в среде моделирования

Практика № 01: «Регрессионные модели»

Лабораторная работа № 01: «Линейные регрессионные модели»


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)