АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример 3.1. Рассчитать все токи в цепи и напряжение на конденсаторе после замыкания ключа (рис

Читайте также:
  1. X. примерный перечень вопросов к итоговой аттестации
  2. Буду на работе с драконом примерно до 21:00.
  3. Булевы функции. Способы задания. Примеры.
  4. В некоторых странах, например в США, президента заменяет вице-
  5. В примере
  6. В странах Востока (на примере Индии и Китая)
  7. Вания. Одной из таких областей является, например, регулирова-
  8. Вашим сообщениям, например, спеть «С днем рождения»
  9. Виды знания. Контрпример стандартному пониманию знания
  10. Власть примера. Влияние с помощью харизмы
  11. Внешний долг (внешняя задолженность): пример России
  12. Вопрос 11. Герои романтических поэм М. Ю. Лермонтова (на примере одного произведения).

Рассчитать все токи в цепи и напряжение на конденсаторе после замыкания ключа (рис. 10), если U 0 = 30 В; r = 100 Ом; С = 100 мкФ.

Решение

Система уравнений, составленных по законам Кирхгофа для цепи после коммутации, имеет вид:

Рис. 10. Расчетная схема для примера 3.1

Сводим систему к одному уравнению.
За неизвестную величину примем напряжение , так как напряжение на ёмкости подчиняется закону коммутации

Учитывая, что , получим дифференциальное уравнение с одним неизвестным:

.

Характеристическое уравнение имеет вид:

 

. (2)

 

Его корень с-1.

Решение дифференциального уравнения имеет вид:

.

Из приведенного примера видно, что составление дифференциальных уравнений – процесс трудоемкий, поэтому решение дифференциального уравнения можно записывать сразу, без составления самого уравнения, в виде суммы принужденной и свободной составляющих. Вид свободной составляющей определим по виду корней характеристического уравнения. Найдем корни характеристического уравнения, используя метод входного сопротивления (см. подразд. 2.3, практическое занятие № 2).

Запишем входное сопротивление цепи после коммутации. Для этого закоротим источник эдс и разомкнем ветвь, содержащую сопротивление r,

.

Приведем дробь к общему знаменателю:

.

Приравняем Z(р) к нулю (). Дробь равна нулю, когда числитель дроби будет равен нулю:

r(2 rpC + 3) = 0 или 2 rpC + 3 = 0.

Получим характеристическое уравнение, аналогичное уравнению (2). Его корень

с-1.

Так, корень характеристического уравнения – один, он является действительным числом, следовательно, напряжение на конденсаторе будет изменяться по закону:

 

. (3)

 

Принуждённое значение напряжения на ёмкости равно напряжению на резисторе 2 r:

В.

Постоянную интегрирования А найдем из уравнения (3), записанного для t = 0:

, так как согласно законам коммутации , то ; 30 = 20 + A; A = 10 B.

Напряжение на конденсаторе uC (t), В,

.

Ток i 3(t), А,через конденсатор:

.

Ток , А, можно найти по закону Ома:

.

Ток в неразветвлённой части цепи i 1(t), А,определим по первому закону Кирхгофа:

.


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)