АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример. Дана функция . Найти точки разрыва, определить их тип

Читайте также:
  1. Демонстрационный пример.
  2. Конкретный пример. Внедрение тейлоризма в Венгрии
  3. Конкретный пример. Макгрегор Д. Человеческий аспект предприятия
  4. Конкретный пример. Памятка-правила
  5. Конкретный пример. Эксперимент на предприятии «Вольво»
  6. Например.
  7. Пример.
  8. Пример.
  9. ПРИМЕР.
  10. Пример.
  11. Пример.
  12. Пример.

Дана функция . Найти точки разрыва, определить их тип.

Функция определена и непрерывна на всей числовой оси, кроме точки . Очевидно, что

.

Следовательно , . Поэтому в точке функция имеет разрыв первого рода. Скачок функции в этой точке равен .

Задание №5. Найти производные первого порядка данных функций, используя правила дифференцирования.

При выполнении данного задания необходимо знать правила дифференцирования (производная суммы, произведения и частного двух функций), а также изучить таблицу производных.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)