АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Смешанное произведение трех векторов
Определение. Произведение называется смешанным произведением трех векторов , и и обозначается или .
Если известны декартовы координаты векторов , , , то
.
Перечислим свойства смешанного произведения:
1) ;
2) ;
3) (если поменять местами два любых вектора, то знак смешенного произведения изменится на противоположный, если поменять местами три вектора, то знак не меняется).
Можно доказать, что модуль смешанного произведения численно равен объему параллелепипеда, или одной второй объема призмы, или одной шестой объема пирамиды, построенных на векторах , и , как на сторонах, т.е.
, , . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | Поиск по сайту:
|