АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Некоторые частные случаи движения точки

Читайте также:
  1. I. ОСНОВНЫЕ СПОСОБЫ ПЕРЕДВИЖЕНИЯ И ПРЕОДОЛЕНИЯ ПРЕПЯТСТВИЙ
  2. II. Разделы социологии: частные социальные науки
  3. А — при двустороннем движении судов; б — при одностороннем движения
  4. Анализ движения дебиторской и кредиторской задолженности
  5. Анализ движения денежной наличности
  6. Анализ движения денежных средств
  7. Анализ движения денежных средств прямым и косвенным методом
  8. Анализ движения и технического состояния основных средств
  9. Анализ движения ОС
  10. Анализ движения основных фондов
  11. Анализ наличия и движения основных средств
  12. Анализ остатков и движения денежной наличности

Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.

 

Равномерное прямолинейное движение

Равномерное прямолинейное движение - это движение, при котором тело за любые равные промежутки времени совершает равные перемещения, т. е. это движение с постоянной по модулю и направлению скоростью:

— уравнение скорости,

— уравнение ускорения.

Пусть в момент времени t0=0 координата тела х0, в момент t - х (рис. 14).

Рис.14

 

Тогда за промежуток времени Δt=t-t0=t координата X тела изменилась на величину ∆х = х - х0. Следовательно, проекция скорости тела

,следовательно,

x=x0+vxt- кинематическое уравнение равномерного движения (уравнение зависимости координаты от времени).

Проекция перемещения ∆rx=х-х0

∆rx=vxt - уравнение перемещения.

При равномерном прямолинейном движении направление скорости не изменяется, поэтому путь . Следовательно, — уравнение пути.

Зависимость кинематических величин от времени можно изобразить графически.

Изобразим графики скорости, перемещения, пути и координаты для трех тел: 1, 2, 3 (рис. 15).

Рис.15

 

Тела 1, 2 движутся в положительном направлении оси Ох, причем ; тело 3 движется в направлении, про­тивоположном оси Ох; их начальные координаты соответственно , . Графики скорости представлены на рис.16. Площадь заштрихованного прямоугольника численно равна пути s (модулю перемещения), пройденному телом 1 за время t1. На рис.17 даны графики перемещения , на рис.18 - графики пути s=f(t).

Рис.16 Рис.17 Рис.18

 

Наклон графика , к оси времени зависит от модуля скорости: .

Графики движения (зависимости координаты от времени) изображены на рис.19.

Рис.19

С помощью графика движения можно определить:

1) координаты тела в любой момент времени;

2) путь, пройденный телом за некоторый промежуток времени;

3) время, за которое пройден какой-то путь;

4) кратчайшее расстояние между телами в любой момент времени;

5) момент и место встречи тел и др.

 

Равноускоренное прямолинейное движение

Равноускоренное прямолинейное движение - это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т. е. это движение с постоянным по модулю и направлению ускорением.

=сonst — уравнение ускорения.

По определению ускорения .

Пусть в момент времени t0 скорость тела равна , в момент времени t - . Тогда за промежуток времени ∆t=t-t0=t скорость изменилась на . Следовательно, ускорение

— уравнение скорости.

Или в проекциях: .

Эти зависимости кинематических величин от времени изобразим графически для трех тел (рис.20).

Рис.20

 

Графики ускорения представлены на рис.21, а графики скорости - на рис.22.

Для нахождения перемещения воспользуемся графиком скорости (рис.23). Для малого промежутка времени ∆t изменением величины скорости можно пренебречь и скорость можно считать постоянной. Тогда перемещение за промежуток времени ∆t будет равно площади узкой густо заштрихованной полоски. Мысленно разбив все время движения тела на малые промежутки времени и найдя перемещение за каждый отдельный промежуток времени, суммируем эти перемещения. Модуль проекции перемещения за промежуток времени ∆t=t-t0=t в пределе численно равен площади заштрихованной трапеции.

Рис.21 Рис.22 Рис.23

 

Следовательно, (2)

Подставив значение в (2), получим:

— уравнение перемещения в проекциях;

— уравнение перемещения в векторном виде.

Учитывая, что х=х0+∆rх, имеем:

— кинематическое уравнение равноускоренного движения.

Его векторный вид:

Исключая из уравнений скорости и перемещения время t, получим:

.

Сравнивая выражение (2) с формулой , найдем:

- проекция средней скорости при равноускоренном движении.

Графиком перемещения является парабола, положение вершины которой зависит от направлений начальной скорости и ускорения (рис.24).

Рис.24


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)