|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
СИСТЕМ ОТОПЛЕНИЯПри автоматизации систем отопления заданный график подачи теплоты обеспечивается путем поддержания регулятором соответствующего графика температур теплоносителя. Могут применяться следующие способы поддержания графика температур теплоносителя, циркулирующего в системе отопления: 1) поддержание графика температур теплоносителя в подающем трубопроводе — t01; 2) поддержание графика температур теплоносителя в обратном трубопроводе — t2; 3) поддержание графика разности температур теплоносителя в обоих трубопроводах Dt=t01 -t2. Первый способ, наиболее распространенный за рубежом, приводит к завышению подачи теплоты в теплый период отопительного сезона примерно на 4 % годового теплопотребления на отопление вследствие необходимости спрямления криволинейного графика температур воды в подающем трубопроводе. Второй способ рекомендуется применять при автоматизации систем, в которых возможно изменение расхода циркулирующего теплоносителя (например, при подключении системы отопления к тепловым сетям через элеватор с регулируемым сечением сопла, с корректирующим насосом, установленным на перемычке между подающим и обратным трубопроводами). Контроль температуры в обратном трубопроводе гарантирует нормальный прогрев последнихпо ходуводы в стояке отопительных приборов. Третий способ наиболее эффективен, так как при нем повышается точность регулирования,из-за того, что график разности температур — линейный, в отличие от криволинейных графиков температур воды в подающем и обратном трубопроводах систем отопления. Но он может применяться только в системах отопления, в которых поддерживается постоянный расход циркулирующего теплоносителя (например, при независимом присоединении через водоподогреватель или с корректирующими насосами, установленными на подающем или обратном трубопроводах системы отопления). При известном расходе воды, циркулирующей в системе,этот способ регулирования является наиболее точным, так как еще устраняет ошибки в подаче теплоты при наличии запаса в поверхности нагрева отопительных приборов (при других способах регулирования поддержание расчетного графика приведет к перерасходу теплоты и из-за незнания фактического значения показателя степени т в формуле коэффициента теплопередачи отопительного прибора). На рис. 2 и 3 представлены графики изменения относительной температуры воды в подающем и обратном трубопроводах систем отопления с постоянной циркуляцией воды (температурного критерия системы отопления)_ в зависимости от относительного теплового потока на отопление Q0, определенного по разделу А настоящего приложения, и с учетом возможных значений показателя степени m в формуле коэффициента теплопередачи отопительного прибора (здесь b далее с индексом «т» — значения температур при текущей температуре наружного воздуха). Рис. 2. Графики изменения температурного критерия системы отопления по температуре воды в подающем трубопроводе — для различных значений показателя степени m и при постоянной циркуляции теплоносителя в системе
Эти рисунки иллюстрируют значительное влияние на степень криволинейности графиков температур воды фактического значения коэффициента m, который зависит от типа отопительных приборов и способа прокладки стояка. Так. например, в системах отопления с замоноличенными стояками и конвекторами «Прогресс» следует принимать m= 0,15, а в системах отопления с конвекторами «Комфорт» и открыто проложенными стояками m = 0,32. В системах с чугунными радиаторами m = 0,25. Используя эти графики, находят искомую температуру воды в подающем или обратном трубопроводе при различных температурах наружного воздуха: для требуемой tн находят по формулам (1) и (2) или из графика рис.1 относительный расход теплоты на отопление Q0, а Рис. 3. Графики изменения температурного критерия системы отопления по температуре воды в обратном трубопроводе при постоянной циркуляции воды в системе
по нему — из графиков рис. 2 или 3 относительную температуру воды. Затем по нижеперечисленным формулам — искомую температуру воды: (3) (4) Значения ti и tiопт принимаются теми же, что и при определении Q0. На рис. 4 приведены для однотрубных систем отопления требуемые графики изменения относительной температуры воды в подающем (tT01-tiопт)/(t01 -ti) обратном (tT2-tiопт)/(t2 -ti) трубопроводах и их разности (tT01-tT2)/(t01 -t2), обозначаемые далее критерием Q, и определенные исходя из обеспечения одинакового изменения теплоотдачи первых и последних по ходу
Рис. 4. Графики изменения относительных температур теплоносителя в однотрубных системах отопления при количественно-качественном регулировании воды в стояке отопительных приборов. При этом в системах отопления расход циркулирующего теплоносителя должен изменяться (количественно-качественное регулирование) в соответствии с графиками, приведенными на рис. 5, Графики построены по следующим формулам для различных m: (5) (6) где G0, G0max расход циркулирующего теплоносителя соответственно при текущей наружной температуре и расчетной для проектирования отопления. При регулировании подачи теплоты в системах отопления центральных тепловых пунктов (ЦТП) температурные графики определяются по тем же зависимостям, как и для систем отопления отдельных зданий, подставляя иное значение расчетной температуры. Например, для ЦТП с независимым присоединением квартальных Рис. 5. Графики изменения относительного расхода воды в однотрубной системе отопления при количественно-качественном регулировании сетей отопления t01=120 °С, а для ЦТП с зависимым присоединением —t01 =150 °С. Если вентиляционная нагрузка потребителей, подключенных к ЦТП, не превышает 15 % отопительной, более оптимальным в ЦТП остается регулирование по разности температур воды в подающем и обратном трубопроводах (при размещении корректирующих насосов на перемычке устанавливают дополнительный регулятор для стабилизации расхода воды в квартальных сетях). При этом, соблюдая принцип ограничения максимального расхода сетевой воды на вводе теплового пункта, для компенсации недогрева зданий в часы прохождения максимального во-доразбора график температур, задаваемый регулятору, повышается на 3 °С против отопительного. Тогда в часы максимального водоразбора график все равно не будет выдерживаться, но за счет превышения его в остальные часы в целом за сутки здание получит норму расхода теплоты. Примерные графики регулирования подачи теплоты для условий расчетной наружной температуры минус 25 °С приведены на рис. 6. При регулировании подачи теплоты на отопление в ЦТП, когда постоянство расхода теплоносителя не обеспечивается (отсутствует корректирующий насос или при установке корректирующего насоса на перемычке отсутствует регулятор стабилизации расхода воды) и системы отопления подсоединены к квартальным сетям через элеваторные узлы, следует поддерживать график температур воды в обратном трубопроводе. При этом значение параметра (tT2-tiопт)/(t2 -ti) следует определять исходя из соответствия изменения теплоотдачи в последних по ходу воды стояках отопительных приборов, т.е. на основе зависимостей, приведенных на рис. 3, и формулы (4). Если вентиляционная нагрузка потребителей, подключенных к ЦТП, превышает 15 % отопительной (т.е. создается нестабильность изменения температуры обратной воды, поступающей в ЦТП, и из-за малой инерционности калориферов не допускается снижение температуры теплоносителя, поступающего к ним), подачу теплоты в квартальные сети следует регулировать поддержанием температурного графика в подающем трубопроводе без повышения его из-за ограничения расхода сетевой воды. Последнее выполняется в этом случае исходя из максимального часового расхода теплоты на горячее водоснабжение и путем воздействия на клапан, изменяющий расход теплоносителя на водоподогреватель горячего водоснабжения, а не отопления, что имеет место при меньшей вентиляционной нагрузке.
Рис. 6. Графики изменения разности температуры воды в подающем и обратном трубопроводах системы отопления Dt в зависимости от tн 1—3—Dt = 150...70°С соответственно наветренная ориентация фасада здания, заветренная и с ограничением максимального расхода воды, 4—6 Dt= 120...70°С, тоже; 7—Dt= 105..70 °С— заветренная ориентация, 8— Dt= 95...70 °С—тоже Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |