|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Обучение методом обратного распространения ошибокДля обучения многослойной сети в 1986 г. Руммельхартом и Хинтоном (Rummelhart D.E., Hinton G.E., Williams R.J., 1986) был предложен алгоритм обратного распостранения ошибок. Нельзя применить для обучения d-правило Розенблатта. Т.к. для применения метода Розенблатта необходимо знать не только текущие выходы нейронов y, но и требуемые правильные значения Y. В случае многослойной сети эти правильные значения имеются только для нейронов выходного слоя. Требуемые значения выходов для нейронов скрытых слоев неизвестны, что и ограничивает применение d-правила. Основная идея обратного распространения состоит в том, как получить оценку ошибки для нейронов скрытых слоев. Заметим, что известные ошибки, делаемые нейронами выходного слоя, возникают вследствие неизвестных пока ошибок нейронов скрытых слоев. Чем больше значение синаптической связи между нейроном скрытого слоя и выходным нейроном, тем сильнее ошибка первого влияет на ошибку второго. Следовательно, оценку ошибки элементов скрытых слоев можно получить, как взвешенную сумму ошибок последующих слоев. При обучении информация распространяется от низших слоев иерархии к высшим, а оценки ошибок, делаемые сетью - в обратном напаравлении, что и отражено в названии метода. Пусть сеть имеет только один скрытый слой. Матрицу весовых коэфф-тов от входов к скрытому слою обозначим W, а м-цу весов, соед-щих скрытый и выходной слой - как V. Для индексов примем след-е обозначения: входы будем нумеровать только индексом i, элементы скрытого слоя - индексом j, а выходы, соответственно, индексом k. Пусть сеть обучается на выборке (Xa,Ya), a=1..p. Активности нейронов будем обозначать малыми буквами y с соотвествующим индексом, а суммарные взвешенные входы нейронов - малыми буквами x. Алгоритм обратного распространения ошибки. Щаг 0. Начальные значения весов всех нейронов всех слоев полагаются случайными числами V(t=0) и W(t=0). Шаг 1. Сети предъявляется входной образ X, в результате формируется выходной образ y¹Ya. При этом нейроны последовательно от слоя к слою функционируют по следующим формулам: скрытый слой выходной слой Здесь f(x) - сигмоидальная ф-ия, определяемая по формуле (6.1) Шаг 2. Функционал квадратичной ошибки сети для данного входного образа имеет вид: Данный функционал подлежит минимизации. Классический градиентный метод оптимизации состоит в итерационном уточнении аргумента согласно формуле: Функция ошибки в явном виде не содержит зависимости от веса Vjk, поэтому воспользуемся формулами неявного дифференцирования сложной функции: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |