|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Характеристическое уравнение имеет два различных действительных корняЕсли характеристическое уравнение имеет два различных действительных корня , (т.е., если дискриминант ), то общее решение однородного уравнения выглядит так: В случае если один из корней равен нулю, решение очевидным образом упрощается; пусть, например, , тогда общее решение: . Пример 1 Решить дифференциальное уравнение Решение: составим и решим характеристическое уравнение: , Ответ: общее решение: Не будет ошибкой, если записать общее решение наоборот: , но хорошим стилем считается располагать коэффициенты по возрастанию, сначала –2, потом 1. Придавая константам различные значения, можно получить бесконечно много частных решений. Решить дифференциальное уравнение – это значит найти множество решений, которое удовлетворяет данному уравнению. Такое множество решений, напоминаю, называется общим интегралом или общим решением дифференциального уравнения. Таким образом, в рассмотренном примере найденное общее решение должно удовлетворять исходному уравнению . Точно так же, как и диффура 1-го порядка, в большинстве случаев легко выполнить проверку: Берем наш ответ и находим производную: Получена правая часть исходного уравнения (ноль), значит, общее решение найдено правильно (оно, как проверено, удовлетворяет уравнению ). Пример 2 Найти общее решение дифференциального уравнения, выполнить проверку Это пример для самостоятельного решения. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |