|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Примеры решений. Речь пойдет о так называемых уравнениях Бернулли, которые нет-нет, да и встречаются в практических работах и контрольных заданияхРечь пойдет о так называемых уравнениях Бернулли, которые нет-нет, да и встречаются в практических работах и контрольных заданиях. Уравнение Бернулли рекомендую изучать только в том случае, если у вас уже есть опыт решения дифференциальных уравнений первого порядка, в особенности, следует хорошо ориентироваться в линейных неоднородных уравнениях вида . Дифференциальное уравнение Бернулли имеет вид: Очевидно – уравнение Бернулли по общей структуре напоминает линейное неоднородное уравнение первого порядка. Характерным признаком, по которому можно определить уравнения Бернулли, является наличие функции «игрек» в степени «эн»: . Если или , то уравнение Бернулли превращается в уравнения, которые вы уже должны уметь решать. Целая степень может быть как положительной, так и отрицательной (во втором случае получится дробь), кроме того, может быть обыкновенной дробью, например . Как и линейное неоднородное уравнение первого порядка, уравнение Бернулли может приходить на новогодний утренник в разных костюмах. Волком: Зайчиком: Или белочкой: Важно, чтобы в уравнении присутствовал персонаж , который, иногда может маскироваться под корень. Обратите внимание, что одним из очевидных решений уравнения Бернулли (если ) является решение: . Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Пример 1 Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. Решение: Данное дифференциальное уравнение имеет вид , а значит, является уравнением Бернулли Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |