|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Ферментативная регуляцияИзостерическая регуляция активности ферментов осуществляется на уровне их каталитических центров. Реакционная способность и направленность работы каталитического центра прежде всего зависят от количества субстрата (закон действия масс). Интенсивность работы фермента определяется также наличием коферментов (для двухкомпонентных энзимов), кофакторов (специфически действующих катионов) и активаторов или ингибиторов, действующих на уровне каталитического центра. Активность тех или других ферментов может быть связана с конкуренцией за общие субстраты и коферменты, что является одним из способов взаимодействия различных метаболических циклов. Некоторые ферменты, кроме каталитических (изостерических) центров, имеют также аллостерические, т.е. расположенные в других местах рецепторйые участки, которые служат для связывания аллостерических эффекторов (регуляторов). В качестве эффекторов могут выступать определенные метаболиты, гормоны или даже молекулы субстрата. В результате присоединения положительно или отрицательно действующего эффектора к аллостерическому центру происходит изменение всей структуры фермента (конформация), что приводит соответственно к активации или торможению функциональной активности каталитического центра. Важным способом регуляции ферментативной активности является перевод неактивной в активную форму. Это достигается разрушением некоторых ковалентных связей с помощью протеаз, восстановлением дисульфидных групп, фосфорилированием протеинкиназами за счет АТР или ассоциацией неактивных субъединиц. Потенциально активные ферменты могут не функционировать из-за их компартментации, например, в лизосомах, причем освобождению лизосомных гидролаз способствуют кислые значения рН, свободнорадикальное окисление мембранных липидов и некоторые жирорастворимые витамины и стероиды. Инактивация ферментов осуществляется путем их связывания специфическими ингибиторами белковой природы, а также разрушения протеиназами. Генетическая регуляция включает в себя регуляцию на уровне" транскрипции, процессинга и трансляции. Информация в клетках передается благодаря синтезу РНК на матрице ДНК (транскрипция) и синтезу специализированных белков. В ходе и после транскрипции или трансляции происходит модификация биополимеров (процессинг), транспортирующихся в места назначения. Специализированные белковые молекулы в соответствии со своей «структурной» информацией, выполняющие различные функции: каталитические (ферменты), двигательные (сократительные белки), транспортные (насосы и переносчики), рецепторные и др. Для извлечения в нужный момент необходимой информации из структур хромосом в клетке существует сложная система регуляции, Для начала транскрипции (инициации транскрипции) нужно активировать акцепторные зоны регуляторных генов. После того, как все участки акцепторной зоны активируются соответствующими эффекторами (фитогормонами и др.) происходит транскрипция. Например, транскрипция рибосомальных генов начинается с З'-конца ДНК. Структурные гены, кодирующие 18S, 5,8 S и 25 S рРНК, разделены спейсерами (прокладками). В гене 25S рРНК наряду с кодирующими участками (экзонами) могут существовать некодирующие участки (интроны). Блоки структурных генов рРНК в ядрышковой ДНК, следуя друг за другом (тандемно), многократно повторяются. Зрелые РНК образуются в ходе процессинга про-рРНК вследствие ее фрагментации и удаления участков, соответствующих спейсерам, а также благодаря сплайсингу, т. е. вырезанию интрона и объединению кодирующих участков РНК. Существует несколько гипотез, объясняющих механизмы постранскрипционной регуляции экспрессии генов мРНК. Согласно гипотезе Э. Дэвидсона и Р. Бриттена (1973, 1979), в ядерной ДНК наряду со структурными генами, кодирующими синтез различных мРНК, присутствуют интегрирующие регуляторные гены, содержащие многочисленные повторы. Если в нуклеоплазме в большом количестве появляются транскрипты с определенных регуляторных генов (регуляторные транскрипты), то образуются комплементарные ассоциаты с соответствующими про-мРНК. В результате эти про-мРНК подвергаются быстрому процессингу, и активированные таким образом мРНК начинают функционировать. При этом резко возрастает скорость их считывания с соответствующих структурных генов. Механизмы трансляции гораздо сложнее процессов транскрипции. В то время как транскрипцию обеспечивают десятки белков, для осуществления синтезд полипептида необходимы сотни специализированных белков. Только в рибосомах эукариот их 70—100, причем малая и большая рРНК выполняют роль каркаса, на котором осуществляется самосборка этих белков. Интенсивность и направленность трансляции зависят от: 1) концентрации информационных матриц, т. е. специфических мРНК, уровень которых определяется их синтезом, транспортом, хранением, активацией и распадом; 2) присутствия всех компонентов аппарата трансляции (рибосом, тРНК, амино- 2 2 кислот, ATP, GTP, синтетаз, регуляторных белков); 3) физико-химических условий (рН, ионов). Изменение этих параметров – тоже регуляция. Мембранная регуляция осуществляется благодаря сдвигам в мембранном транспорте, связыванию или освобождению регуляция ферментов и регуляторных белков и путем изменения активности мембранных ферментов. Все рассмотренные функции мембран — транспортная, осмотическая, энергетическая и др. — одновременно являются и различными сторонами механизма регуляции внутриклеточного обмена веществ. Причем особое значение во всех этих механизмах имеет система мембранных хемо-, фото- и механорецепторов, позволяющих клетке оценивать качественные и количественные изменения во внешней и внутренней среде и в соответствии с этим изменять свойства мембран. Контактная регуляция активности ферментов имеет место, в частности, в цистернах ЭР и в АГ, где идет достройка и модификация секретируемых белков. Связывание мембранами или освобождение ферментов, как уже отмечалось, также меняет их активность. Дистанционная мембранная регуляция активности внутриклеточных ферментов осуществляется путем доставки субстратов и коферментов, удаления, продуктов реакции, ионных и кислотно-щелочных сдвигов в компартментах, фосфорилированием ферментов и другими способами. Сдвиги в концентрации кальция выполняют в растительных клетках регуляторную роль. Ионы Са2+, взаимодействуя с регуляторным белком кальмдулином, активируют протеинкиназы, фосфорилирующие различные белки, что приводит к изменению их функциональной активности. Са2+ специфически необходим для регуляции и таких процессов, как движение цитоплазмы, митоз, секреция. Мембранная регуляция генной активности на уровне репликации, транскрипции, процессинга и трансляции также осуществляется - контактным и дистанционным способами. Причем с появлением у эукариот ядерной оболочки значение мембранной регуляции возросло. На возможность контактной регуляции указывают многочисленные связи хромосом эукариот с внутренней мембраной ядер, которые, по- видимому, принимают участие в пространственной организации хромосомного аппарата в нуклеоплазме. Примером контактной регуляции в цитоплазме может служить шероховатый ретикулум, на поверхности мембран которого расположены рибосомы.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |