|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Оптимизационные моделиЭкономико-математические задачи, цель которых состоит в нахождении наилучшего (оптимального) с точки зрения некоторого критерия или критериев варианта использования имеющихся ресурсов (труда, капитала и пр.), называются оптимизационными. Оптимизационные задачи (ОЗ) решаются с помощью оптимизационных моделей (ОМ) методами математического программирования. Структура оптимизационной модели состоит из целевой функции, области допустимых решений и системы ограничений и граничных условий, определяющих эту область. Целевая функция в самом общем виде, в свою очередь, также состоит из трех элементов: - управляемых переменных; - неуправляемых переменных; - формы функции (вида зависимости между ними). Область допустимых решений (ОДР) – это область, в пределах которой осуществляется выбор решений, – совокупность точек, удовлетворяющих ограничениям и граничным условиям. Граничные условия задают интервалы, в которых ищется решение, ограничения – зависимости между переменными. В экономических задачах ОДР ограничена наличными ресурсами, условиями, которые записываются в виде системы ограничений, состоящей из уравнений и неравенств. Если эта система ограничений несовместима, то область допустимых решений является пустой. Ограничения в оптимизационных задачах подразделяются: а) на линейные (I и II) и нелинейные (III и IV) (рис. 2.1); б) детерминированные (А, В) и стохастические (группы кривых Сi) (рис. 2.2). Детерминированные ограничения жестко определены. Стохастические ограничения являются возможными, вероятностными, случайными.
Оптимизационные задачи решаются методами математического программирования, главная задача которого – нахождение экстремума функций при ограничениях в форме уравнений и неравенств. Методы математического программирования подразделяются на линейное программирование, нелинейное программирование, динамическое программирование, целочисленное программирование, выпуклое программирование, исследование операций, геометрическое программирование и др. В дальнейшем мы будем рассматривать методы линейного программирования.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |