|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Авторегрессионные модели временных рядовМодели, которые наряду с текущими или лаговыми значениями факторных переменных, содержат лаговые значения зависимой переменной называются моделями авторегрессии, например, модель вида . Применение обычного МНК для оценки параметров уравнения авторегрессии приводит во многих случаях к получению смещенной оценки коэффициента при переменной . Одним из альтернативных методов расчета параметров уравнения авторегрессии является метод инструментальных переменных. Поскольку в модели переменная зависит не только от , но и от , можно предположить, что имеет место линейная регрессия от , т. е. . Параметры этой регрессии допустимо найти МНК через Анализ данных/Регрессия. Рассчитанными по построенному уравнению значениями можно заменить исходные данные переменной . Затем проводят параметризацию уравнения . Отметим, что практическая реализация метода инструментальных переменных осложняется появлением проблемы мультиколлинеарности факторов в модели : функциональная связь между переменными и приводит к появлению высокой корреляционной связи между переменными и . В некоторых случаях эту проблему можно решить включением в модель фактора времени в качестве независимой переменной. При оценке достоверности моделей авторегрессии необходимо учитывать специфику тестирования этих моделей на автокорреляцию остатков. Для проверки гипотезы об автокорреляции остатков в моделях авторегрессии Дарбин предложил использовать другой критерий, который называется критерием –Дарбина. Его расчет производится по следующей формуле (расчет этого критерия возможен только в случаях, когда < 1): , где d – фактическое значение критерия Дарбина – Уотсона для модели авторегрессии; n – число наблюдений модели; V – квадрат стандартной ошибки при лаговой результативной переменной (расчет возможен только при условии, что ). Распределение величины h приблизительно можно аппроксимировать стандартизированным нормальным распределением. Поэтому для проверки гипотезы о наличии автокорреляции остатков можно либо сравнивать полученное фактическое значение критерия с табличным, воспользовавшись таблицами стандартизованного нормального распределения, либо действовать в соответствии со следующим правилом принятия решения. 1. Если >1,96, нулевая гипотеза об отсутствии положительной автокорреляции остатков отклоняется. 2. Если <-1,96, нулевая гипотеза об отсутствии отрицательной автокорреляции остатков отклоняется. 3. Если -1,96< <1,96, нет оснований отклонять нулевую гипотезу об отсутствии автокорреляции остатков.
Модель адаптивных ожиданий имеетвид , где – фактическое значение результативного признака; – ожидаемое значение факторного признака. Механизм формирования ожиданий в этой модели следующий: , . То есть, в каждый период времени ожидания корректируются на некоторую долю разности между фактическим значением факторного признака и его ожидаемым значением в предыдущий период. Параметр в этой модели называется коэффициентом ожиданий. Чем ближе коэффициент ожиданий к единице, тем в большей степени реализуются ожидания экономических агентов. И, наоборот, приближение величины к нулю свидетельствует об устойчивости существующих тенденций. При , получается, что , т.е. условия, доминирующие сегодня, сохранятся и на будущие периоды времени, то есть ожидаемые будущие значения показателей совпадут с их реальными значениями текущих периодов. Модель адаптивных ожиданий может быть сведена к модели авторегрессии , которая называется краткосрочной функцией модели адаптивных ожиданий. Ее параметры можно найти методом инструментальной переменной. По коэффициенту при переменной определяют значение коэффициента ожидания , а затем параметры a и b.
Пример. Имеются следующие данные
Необходимо: 1. Построить уравнение авторегрессии методом наименьших квадратов. Оценить его статистическую надежность и автокорреляцию в остатках. 2. Применить метод инструментальной переменной для параметризации уравнения авторегрессии. Оценить статистическую надежность и автокорреляцию в остатках. 3. Построить модель адаптивных ожиданий . Выполнить прогнозный расчет для ожидаемого значения .
1. Для построения авторегрессии методом наименьших квадратов используем данные
Протокол расчета в Анализ данных/Регрессия
Добавляем в протокол расчет для проверки на автокорреляцию в остатках по критерию Дарбина. Поскольку -1,96< <1,96, считаем, что автокорреляции в остатках отсутствует. Показатели детерминации, статистической значимости в целом и по параметрам весьма удовлетворительные. Получаем уравнение вида: . 2. Строим инструментальную (вспомогательную) переменную как линейную регрессию по выделенным исходным данным.
Получим уравнение . Строим таблицу данных для построения регрессии .
Протокол расчета:
Поскольку -1,96< <1,96, считаем, что автокорреляция в остатках отсутствует. Показатели детерминации, статистической значимости в целом и по параметрам весьма удовлетворительные. Получаем уравнение вида: . 3. Построим модель адаптивных ожиданий, то есть зависимость фактическим значение результативного признака и ожидаемым значением факторного признака: . Вспомогательная краткосрочная функция модели адаптивных ожиданий имеет вид . Это уравнение авторегрессии, которое построено в пунктах 1 или 2. Воспользуемся результатом . Тогда
Получаем модель адаптивных ожиданий: . Выполним прогнозный расчет для ожидаемого значения . Тогда . Вывод: если на будущий месяц планировать расходы на рекламу в размере 460,1 у.е., объем продаж текущего месяца должен составить приблизительно 31,93 у.е. Задания для самостоятельной работы. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.) |