|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Уравнение линейной регрессии по уровням временных рядовУравнение регрессии и все статистические параметры получим по Анализ данных/Регрессия. Причем, в диалоговом окне ввода данных и параметров вывода можно поставить флажок на позиции Остатки, чтобы сразу получить значения
Выводы: Ø Уравнение Ø Статистика критерия Фишера – 238,16; значимость F – 0,000103, что не превышает допустимый уровень значимости 0,05. Уравнение в целом признаем значимым. Ø Статистики критерия Стъюдента для коэффициентов регрессии также имеют допустимый уровень ошибки (P- значение) и признаются значимыми. Найдем коэффициенты автокорреляции остатков до
Вывод: коэффициент автокорреляции второго порядка достаточно высок, что может указывать на невозможность использования линейного уравнения регрессии для прогнозирования. Для окончательно проверки остатков регрессии на автокорреляцию, рассчитаем значение d -статистики Дарбина-Уотсона
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |