|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
XI. Метод регрессииМетод регрессии - это статистический способ поиска функции, которая позволяет по величине одного коррелируемого признака судить о величине другого. С помощью регрессии ставится задача выяснить, как количественно меняется одна величина при изменении другой величины на единицу. Для выполнения такого прогноза требуется определить коэффициент корреляции Пирсона, с использованием которого вычисляют коэффициент регрессии (). Он участвует в создании регрессионной функции вида y=ax+b, которая применяется для прогнозирования требуемых параметров.
Коэффициент регрессии вычисляется по формуле: , где: Ry/x – коэффициент регрессии; rx/y – коэффициент корреляции Пирсона; σx – среднее квадратическое отклонение признака x; σy – среднее квадратическое отклонение признака y.
Среднее квадратическое отклонение (сигма) вычисляется по формуле: , а в программе Excel функцией = СТАНДОТКЛОН(Диапазон ячеек).
Значение коэффициента регрессии () в программе Excel может быть вычислено функцией =НАКЛОН(Диапазон_y; Диапазон_х).
Формула определения значения зависимого признака: y = My + Ry/x (x - M x),
где: y – зависимая переменная; My – средняя признака y; Ry/x - коэффициент регрессии; x - значение измеренного признака; Mx – средняя арифметическая признака x.
В программе Excel значение зависимой переменной (y) при заданном значении x может быть вычислено функцией =ПРЕДСКАЗ(x; Диапазон_y; Диапазон_x).
После получения прогнозируемого значения (y) выполняется определение его доверительного интервала с целью экстраполяции данных на генеральную совокупность с уровнем значимости p <0,05. Для этого вычисляется сигма регрессии , которая показывает меру вариабельности зависимого признака, вычисленного по уравнению регрессии, в генеральной совокупности. Она определяется по формуле: . Вычисление значения может производиться функцией = СТАНДОТКЛОН(Диапазон_у). Пример прогнозирования значения одного признака по известному значению другого с помощью уравнения регрессии. Условие задачи: на основе данных, характеризующих уровень запыленности рабочих мест (см. раздел VIII), необходимо выполнить прогноз уровня пыли при температуре воздуха 23С0. Задание: построить уравнение регрессии для зависимости между температурой окружающей среды и уровнем запыленности помещения, создать регрессионную функцию и вычислить значение уровня пыли при температуре воздуха 23Со. Определить сигму регрессии и доверительный интервал для прогнозируемого значения уровня пыли.
Решение: запустите программу Excel, откройте файл в папке своей учебной группы под именем «Статистика–Фамилии студентов». Создайте НОВЫЙ лист, переименуйте его, обозначив названием «Регрессия». На этом листе введите данные и решение задачи, как показано ниже, сохраните изменения и покажите результат работы преподавателю.
а) первоначально требуется выполнить вычисление коэффициента корреляции Пирсона с помощью таблицы отклонений (таблица 39) или функцией =КОРРЕЛ(Диапазон1;Диапазон2). Таблица 39 Вычисление коэффициента корреляции Пирсона
=КОРРЕЛ(x1:xn; y1:yn) = 0,88. б) вычисление коэффициента регрессии(Ry/x):
в) вычисление величины зависимого признака (y) при температуре 23С0:
г) вычисление доверительных границ колебаний зависимого признака в генеральной совокупности: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |