АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Состав, строение и биологическая роль ДНК

Читайте также:
  1. I и II ополчения: их состав, значение.
  2. II. Построение характеристического графика часовой производительности.
  3. MathCad: построение, редактирование и форматирование графиков в декартовой системе координат.
  4. Toxoplasma gondii. Строение, цикл развития, пути заражения, меры.
  5. V. Построение одного тренировочного занятия
  6. Авт. Андриевский М.И. «Судостроение», 1977. Монография
  7. Алгоритм 2.1. Построение выходной таблицы, столбиковой диаграммы и кумуляты
  8. Анатомическое строение
  9. Анатомическое строение брюшной полости
  10. Анатомическое строение верхней челюсти и пограничных костей.
  11. Анатомическое строение зубов
  12. Анатомическое строение челюстно-лицевой области

У вирусов, а также в митохондриях 1-цепочечная ДНК, в остальных клетках – 2-цепочечная, у прокариотов – 2-цепочечная кольцевая.

Состав ДНК – соблюдается строгое соотношение азотистых оснований в 2 цепях ДНК, которые определяются Правилами Чаргафа.

Правила Чаргафа:

  1. Количество комплементарных азотистых оснований равно (А=Т, Г=Ц).
  2. Молярная доля пуринов равна молярной доле пиримидинов (А+Г=Т+Ц).
  3. Число 6-кетооснований равно числу 6-аминооснований.
  4. Соотношение Г+Ц/ А+Т – коэффициент видовой специфичности. Для животных и растительных клеток < 1, у микроорганизмов колеблется от 0,45 до 2,57.

У микроорганизмов преобладает ГЦ-тип, АТ-тип характерен для позвоночных, беспозвоночных и растительных клеток.

Первичная структура – 2 полинуклеотидные, антипараллельные цепочки (см. первичную структуру НК).

Вторичная структура – представлена 2-цепочечной спиралью, внутри которой комплементарные азотистые основания уложены в виде «стопок монет». Вторичная структура удерживается за счет связей 2 типов:

  • водородных – они действуют по горизонтали, между комплементарными азотистыми основаниями (между А и Т 2 связи, между Г и Ц – 3),
  • силы гидрофобного взаимодействия – эти связи возникают между заместителями азотистых оснований и действуют по вертикали.

Вторичная структура характеризуется:

  • количеством нуклеотидов в спирали,
  • диаметром спирали, шагом спирали,
  • расстоянием между плоскостями, образуемыми парой комплементарных оснований.

Известно 6 конформаций вторичной структуры, которые обозначаются заглавными буквами латинского алфавита: A, B, C, D, E и Z. А, В и Z конформации типичны для клеток, остальные – для бесклеточных систем (например, в пробирке). Эти конформации отличаются основными параметрами, возможен взаимный переход. Состояние конформации во многом зависит:

  • от физиологического состояния клетки,
  • рН среды,
  • ионной силы раствора,
  • действия различных регуляторных белков и др.

Например, В- конфомацию ДНК принимает во время деления клетки и удвоения ДНК, А-конформацию – во время транскрипции. Z-структура является левозакрученной, остальные – правозакрученные. Z-струк-тура может встречаться и в клетке на участках ДНК, где повторяются динуклеотидные последовательности Г-Ц.

Впервые вторичная структура математически была рассчитана и смоделирована Уотсоном и Криком (1953 г.), за что они получили Нобелевскую премию, как оказалось впоследствии, представленная ими модель соответствует В-конформации.

Основные ее параметры:

  • 10 нуклеотидов в витке,
  • диаметр спирали 2 нм,
  • шаг спирали 3,4 нм,
  • расстояние между плоскостями оснований 0,34 нм,
  • правозакрученная.

При формировании вторичной структуры формируется 2 вида бороздок – большая и малая (соответственно шириной 2,2 и 1,2 нм). Большие бороздки играют важную роль в функционировании ДНК, так как к ним присоединяются регуляторные белки, имеющие в качестве домена «цинковые пальцы».

 

Третичная структура – у прокариотов суперспираль, у эукариотов, и человека в том числе, имеет несколько уровней укладки:

  • нуклеосомный,
  • фибриллярный (или соленоидный),
  • хроматиновое волокно,
  • петельный (или доменный),
  • супердоменный (именно этот уровень можно видеть в электронном микроскопе в виде поперечной исчерченности).

Нуклеосомный. Нуклеосома (открыта в 1974 г.) представляет собой частицу дисководной формы, диаметр 11 нм, которая состоит из гистонового октамера, вокруг которого двухцепочечная ДНК делает 2 неполных витка (1,75 витка).

Гистоны – низкомолекулярные белки, содержат по 105-135 амино-кислотных остатков, в гистоне Н1 – 220 аминокислотных остатков, до 30% приходится на долю лиз и арг.

Гистоновый октамер называют кором. Он состоит из центрального тетрамера Н32-Н42 и двух димеров Н2А-Н2В. Эти 2 димера стабилизируют структуру и прочно связывают 2 полувитка ДНК. Расстояние между нуклеосомами называется линкером, в котором может содержаться до 80 нукклеотидов. Гистон Н1 препятствует раскручиванию ДНК вокруг кора и обеспечивает уменьшение расстояния между нуклеосомами, т. е. участвует в формировании фибриллллы (2-го уровня укладки третичной структуры).

При скручивании фибриллы формируется хроматиновое волокно (3-й уровень), при этом в одном витке обычно содержится 6-г нуклеосом, диаметр такой структуры увеличивается до 30 нм.

В интерфазных хромосомах хроматиновые волокна организованы в домены, или петли, состоящие из 35-150 тыс пар оснований и заякоренные на внутриядерном матриксе. В формировании петель принимают участие ДНК-связывающие белки.

Супердоменный уровень образуют до 100 петель, в этих участках хромосомы в электронном микроскопе хорошо заметны конденсированные плотно упакованные участки ДНК.

Благодаря такой укладке ДНК компактно уложена. Ее длина сокращается в 10 000 раз. В результате упаковки ДНК связывается с гистонами и другими белками, образуя нуклеопротеиновый комплекс в виде хроматина.

Биологическая роль ДНК:

  • хранение и передача генетической информации,
  • контроль деления и функционирования клетки,
  • генетический контроль запрограммированной гибели клетки.

В состав хроматина входят ДНК (30% от всей массы хроматина), РНК (10%) и белки (гистоновые и негистоновые)


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)