|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Состав, строение и биологическая роль ДНКУ вирусов, а также в митохондриях 1-цепочечная ДНК, в остальных клетках – 2-цепочечная, у прокариотов – 2-цепочечная кольцевая. Состав ДНК – соблюдается строгое соотношение азотистых оснований в 2 цепях ДНК, которые определяются Правилами Чаргафа. Правила Чаргафа:
У микроорганизмов преобладает ГЦ-тип, АТ-тип характерен для позвоночных, беспозвоночных и растительных клеток. Первичная структура – 2 полинуклеотидные, антипараллельные цепочки (см. первичную структуру НК). Вторичная структура – представлена 2-цепочечной спиралью, внутри которой комплементарные азотистые основания уложены в виде «стопок монет». Вторичная структура удерживается за счет связей 2 типов:
Вторичная структура характеризуется:
Известно 6 конформаций вторичной структуры, которые обозначаются заглавными буквами латинского алфавита: A, B, C, D, E и Z. А, В и Z конформации типичны для клеток, остальные – для бесклеточных систем (например, в пробирке). Эти конформации отличаются основными параметрами, возможен взаимный переход. Состояние конформации во многом зависит:
Например, В- конфомацию ДНК принимает во время деления клетки и удвоения ДНК, А-конформацию – во время транскрипции. Z-структура является левозакрученной, остальные – правозакрученные. Z-струк-тура может встречаться и в клетке на участках ДНК, где повторяются динуклеотидные последовательности Г-Ц. Впервые вторичная структура математически была рассчитана и смоделирована Уотсоном и Криком (1953 г.), за что они получили Нобелевскую премию, как оказалось впоследствии, представленная ими модель соответствует В-конформации. Основные ее параметры:
При формировании вторичной структуры формируется 2 вида бороздок – большая и малая (соответственно шириной 2,2 и 1,2 нм). Большие бороздки играют важную роль в функционировании ДНК, так как к ним присоединяются регуляторные белки, имеющие в качестве домена «цинковые пальцы».
Третичная структура – у прокариотов суперспираль, у эукариотов, и человека в том числе, имеет несколько уровней укладки:
Нуклеосомный. Нуклеосома (открыта в 1974 г.) представляет собой частицу дисководной формы, диаметр 11 нм, которая состоит из гистонового октамера, вокруг которого двухцепочечная ДНК делает 2 неполных витка (1,75 витка). Гистоны – низкомолекулярные белки, содержат по 105-135 амино-кислотных остатков, в гистоне Н1 – 220 аминокислотных остатков, до 30% приходится на долю лиз и арг. Гистоновый октамер называют кором. Он состоит из центрального тетрамера Н32-Н42 и двух димеров Н2А-Н2В. Эти 2 димера стабилизируют структуру и прочно связывают 2 полувитка ДНК. Расстояние между нуклеосомами называется линкером, в котором может содержаться до 80 нукклеотидов. Гистон Н1 препятствует раскручиванию ДНК вокруг кора и обеспечивает уменьшение расстояния между нуклеосомами, т. е. участвует в формировании фибриллллы (2-го уровня укладки третичной структуры). При скручивании фибриллы формируется хроматиновое волокно (3-й уровень), при этом в одном витке обычно содержится 6-г нуклеосом, диаметр такой структуры увеличивается до 30 нм. В интерфазных хромосомах хроматиновые волокна организованы в домены, или петли, состоящие из 35-150 тыс пар оснований и заякоренные на внутриядерном матриксе. В формировании петель принимают участие ДНК-связывающие белки. Супердоменный уровень образуют до 100 петель, в этих участках хромосомы в электронном микроскопе хорошо заметны конденсированные плотно упакованные участки ДНК. Благодаря такой укладке ДНК компактно уложена. Ее длина сокращается в 10 000 раз. В результате упаковки ДНК связывается с гистонами и другими белками, образуя нуклеопротеиновый комплекс в виде хроматина. Биологическая роль ДНК:
В состав хроматина входят ДНК (30% от всей массы хроматина), РНК (10%) и белки (гистоновые и негистоновые) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |