АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифракция на круглом отверстии. Вид дифракционной картины в точке Р зависит от числа зон Френеля, укладывающихся в отверстии

Читайте также:
  1. I. Дифракция Фраунгофера на одной щели и определение ширины щели.
  2. III. Дифракция Фраунгофера на мелких круглых частицах.
  3. V3: Дифракция света
  4. Брегговская дифракция
  5. Возникновение неровностей при круглом наружном шлифовании.
  6. Вопрос 52 Дифракция света
  7. Вопрос№44 Интерференция и дифракция света
  8. ГЛАВА 7. Дифракция пЛОСКОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ НА ИДЕАЛЬНО ПРОВОДЯЩЕМ ЦИЛИНДРЕ
  9. ГЛАВА 8. ДИФРАКЦИЯ Плоской электромагнитной волны на круглом ОТВЕРСТИи в идеально проводящем экране и на идеально проводящем диске
  10. ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ДИФРАКЦИОННОЙ РЕШЕТКИ. ДИФРАКЦИЯ БРЭГГА. ДИФРАКЦИЯ НА МНОГИХ БЕСПОРЯДОЧНО РАСПОЛОЖЕННЫХ ПРЕГРАДАХ
  11. Дифракция
  12. Дифракция

Вид дифракционной картины в точке Р зависит от числа зон Френеля, укладывающихся в отверстии.

 


знак плюс соответствует нечетным m и минус — четным m.

Дифракционная картина вблизи точки Р будет иметь вид чередующихся темных и светлых колец с центрами в точке Р. Если m четное, то в центре будет темное кольцо, если m нечетное — то светлое кольцо.

Дифракция от одной щели. Дифракцию плоских световых волн, или дифракцию в параллельных лучах, рассмотрел немецкий физик И. Фраунгофер

Пусть плоская монохроматическая световая волна падает нормально на щель шириной а (а ≈λ), длина которой значительно больше ее ширины.

Щель становится центром вторичных волн, волны распространяются по всем направлениям, волна становится цилиндрической.

ЕЩЁ ПОДУМАЮ В этом случае изображение точки S0 растянется в полоску с минимумами и максимумами по направлению, перпендикулярному к щели, ибо свет дифрагирует вправо и влево от щели (рис. 4). Если наблюдать изображение источника в направлении, перпендикулярном направлению образующей щели, то можно ограничиться рассмотрением дифракционной картины в одном измерении (вдоль х).

Так как плоскость щели совпадает с фронтом падающей волны, то в с принципом Гюйгенса - Френеля точки щели являются вторичными источниками волн, колеблющихся в одной фазе.

Разобьем площадь щели на зоны Френеля - ряд узких полосок равной ширины, параллельных образующей щели. Фазы волн от разных зон на одинаковых расстояниях равны, амплитуды также равны, ибо выбранные элементы имеют равные площади и одинаково наклонены к направлению наблюдения.

Если бы при прохождении света через щель соблюдался закон прямолинейного распространения света (не было бы дифракции), то на экране Э, установленном в фокальной плоскости линзы L, получалось бы изображение щели. Следовательно, направление j = 0 определяет недифрагированную волну с амплитудой A0 , равной амплитуде волны, посылаемой всей щелью.

Из-за дифракции световые лучи отклоняются от прямолинейного направления на угол j. Отклонение вправо и влево симметрично относительно осевой линии OC0 (рис. 4). Для отыскания действия всей щели в направлении, определяемом углом j, необходимо учесть разность фаз, характеризующую волны, доходящие до точки наблюдения Cj от различных полосок (зон Френеля).

Проведем плоскость FD, перпендикулярную к направлению дифрагированных лучей и представляющую фронт новой волны. Так как линза не вносит дополнительной разности хода лучей, ход всех лучей от плоскости FD до точки Cj одинаков. Следовательно, полная разность хода лучей от щели FE задается отрезком ED. Проведем плоскости, параллельные волновой поверхности FD, таким образом, чтобы они разделили отрезок ED на несколько участков, каждый из которых имеет длину l/2 (рис. 2). Эти плоскости разделят щель на вышеупомянутые полоски - зоны Френеля, причем разность хода от соседних зон равна l/2 в соответствии с методом Френеля. Тогда результат дифракции в точке Cj определится числом зон Френеля: если число зон четное (z = 2k), в точке Cj наблюдается минимум дифракции, если z - нечетное (z = 2k+1), в точке Cj - максимум дифракции. Число зон Френеля, укладывающихся на щели FE, определяется тем, сколько раз в отрезке ED содержится l/2 т.е. . Отрезок ED, выраженный через ширину щели а и угол дифракции j, запишется как ED = а sin j.

В итоге для положения максимумов дифракции получаем условие

а sin j = ± (2k + 1) l / 2, (1)

для минимумов дифракции

а sin j = ± 2k l /2, (2)

где k = 1,2,3.. - целые числа. Величина k, принимающая значения чисел натурального ряда, называется порядком дифракционного максимума. Знаки ± в формулах (1) и (2) соответствуют лучам света, дифрагирующим от щели под углами +j и -j и собирающимся в побочных фокусах линзы L: Cj и C-j, симметричных относительно главного фокуса C0. В направлении j = 0 наблюдается самый интенсивный центральный максимум нулевого порядка.

Положение максимумов дифракции по формуле (1) соответствует углам

, , и т.д.

На рис.5 приведена кривая распределения интенсивности света в функции sin j. Положение центрального максимума (j = 0) не зависит от длины волны и, следовательно, является общим для всех длин волн. Поэтому в случае белого света центр дифракционной картины представится в виде белой полоски. Ясно, что положение максимумов и минимумов зависит от длины волны. Поэтому простое чередование темных и светлых полос имеет место только при монохроматическом свете. В случае белого света дифракционные картины для волн с разными l сдвигаются в соответствии с длиной волны. Центральный максимум белого цвета имеет радужную окраску только по краям (на ширине щели укладывается одна зона Френеля). Боковые максимумы для разных длин волн уже не совпадают между собой; ближе к центру располагаются максимумы, соответствующие более коротким волнам. Длинноволновые максимумы отстоят друг от друга дальше (j =arcsinl/2), чем коротковолновые. Поэтому дифракционный максимум представляет собой спектр, обращенный к центру фиолетовой частью.


1 | 2 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)