|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ДИФРАКЦИОННАЯ РЕШЕТКА КАК СПЕКТРАЛЬНЫЙ ПРИБОР. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ ДИФРАКЦИОННОЙ РЕШЕТКИ. ДИФРАКЦИЯ БРЭГГА. ДИФРАКЦИЯ НА МНОГИХ БЕСПОРЯДОЧНО РАСПОЛОЖЕННЫХ ПРЕГРАДАХ
Расположим параллельно решетке собирающую линзу, в фокальной плоскости которой поставим экран. Выясним характер дифракционной картины, получающейся на экране при падении на решетку плоской световой волны (для простоты будем считать, что волна падает на решетку нормально). Каждая из щелей даст на экране картину, описываемую кривой, изображенной на рис. 3.3.21. Картины от всех щелей придутся на одно и то же место экрана (независимо от положения щели, центральный максимум лежит против центра линзы). Если бы колебания, приходящие в точку В дальнейшем мы будем предполагать, что радиус когерентности падающей волны намного превышает длину решетки, так что колебания от всех щелей можно считать когерентными друг относительно друга. В этом случае результирующее колебание в точке
(в данном случае роль Из рис.3.3.25 видно, что разность хода от соседних щелей равна
где Подставив в формулу (3.3.8) выражение (3.3.5) для
( Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (2.165 сек.) |