|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Линейной дисперсией называют величину
Приняв во внимание выражение (3.3.15), получим для линейной дисперсии дифракционной решетки (при небольших
Разрешающей силой спектрального прибора называют безразмерную величину
Возможность разрешения (т. е. раздельного восприятия) двух близких спектральных линий зависит не только от расстояний между ними (которое определяется дисперсией прибора), но также и от ширины спектрального максимума. На рис. 3.3.29 показана результирующая интенсивность (сплошные кривые), наблюдающаяся при наложении двух близких максимумов (пунктирные кривые). В случае а) оба максимума воспринимаются как один. В случае б) между максимумами лежит минимум. Два близких максимума воспринимаются глазом раздельно в том случае, если интенсивность в промежутке между ними составляет не более 80% от интенсивности максимума. Согласно критерию, предложенному Рэлеем, такое соотношение интенсивностей имеет место в том случае, если середина одного максимума совпадает с краем другого (рис. 3.3.29, б). Такое взаимное расположение максимумов получается при определенном (для данного прибора) значении Найдем разрешающую силу дифракционной решетки. Положение середины
Края
Середина максимума для длины волны
Отсюда
Решив это соотношение относительно
Таким образом, разрешающая сила дифракционной решетки пропорциональна порядку спектра Дифракционные решетки бывают прозрачные и отражательные. Прозрачные решетки изготавливаются из стеклянных или кварцевых пластинок, на поверхность которых с помощью специальной машины наносится алмазным резцом ряд параллельных штрихов. Промежутки между, штрихами служат щелями. Отражательные решетки наносятся алмазным резцом на поверхность металлического зеркала. Свет падает на отражательную решетку наклонно. При этом решетка с периодом Поставив две дифракционные решетки одну за другой так, чтобы их штрихи были взаимно перпендикулярными. Первая решетка (штрихи которой, скажем, вертикальны) даст в горизонтальном направлении ряд максимумов, положения которых определяются условием
Вторая решетка (с горизонтальными штрихами) разобьет каждый из образовавшихся таким образом пучков на расположенные по вертикали максимумы, положения которых определяются условием
В итоге дифракционная картина будет иметь вид правильно расположенных: пятен, каждому из которых соответствуют два целочисленных индекса
Дифракционную картину, аналогичную изображенной на рис.3.3.30, дают любые двумерные периодические структуры, например система небольших отверстий или система непрозрачных маленьких шариков. Для возникновения дифракционных максимумов необходимо, чтобы период структуры Дифракция наблюдается также на трехмерных структурах (дифракция Брэгга), т. е. пространственных образованиях, обнаруживающих периодичность по трем не лежащим в одной плоскости направлениям. Подобными структурами являются все кристаллические тела. Однако их период
Каждому значению Условие максимума для цепочки, параллельной оси y, имеет вид
где В направлениях, удовлетворяющих одновременно условиям (3.3.18) и. (3.3.19), происходит взаимное усиление колебаний от источников, лежащих в одной и той же плоскости, перпендикулярной к оси z (эти источники образуют двумерную структуру). Направления возникающих максимумов интенсивности лежат вдоль линий пересечения конусов направлений, один из которых определяется условием (3.3.18), второй — условием (3.3.19). Наконец, для цепочки, параллельной оси z, направления максимумов определяются условием
где
Найденные нами условия
носят название формул Лауэ. Каждому определяемому этими формулами направлению Углы
Таким образом, при заданных Проведем через узлы кристаллической решетки параллельные равноотстоящие плоскости (рис.3.3.33), которые мы будем называть атомными слоями. Если падающая на кристалл волна плоская, огибающая вторичных волн, порождаемых атомами, лежащими в таком слое, также будет представлять собой плоскость. Таким образом, суммарное действие атомов, лежащих в одном слое, можно представить в виде плоской волны, отразившейся от усеянной атомами поверхности по обычному закону отражения. Плоские вторичные волны, отразившиеся от разных атомных слоев, когерентны и будут интерферировать между собой подобно волнам, посылаемым в данном направлении различными щелями дифракционной решетки. При этом, как и в случае решетки, вторичные волны будут практически погашать друг друга во всех направлениях, кроме тех, для которых разность хода между соседними волнами является кратной
Это соотношение называется формулой Брэгга - Вульфа. Важно отметить, что при фраунгоферовой дифракции распределение интенсивности в дифракционной картине определяется только направлением лучей, а не положением световых пучков. Это означает, что распределение интенсивности не изменится, если отверстия в преграде сместить в сторону без изменения их ориентации. Особый интерес представляет ситуация, когда в преграде имеется большое число N одинаковых отверстий. Возможны два случая: 1) отверстия расположены хаотично, беспорядочно; 2) отверстия расположены упорядоченно, регулярно. В первом случае фазовые соотношения между волнами, дифрагированными от отдельных отверстий, имеют случайный характер (волны некогерентны), поэтому для каждого направления наблюдения происходит простое сложение интенсивностей волн, дифрагированных от всех отверстий. Распределение интенсивности в дифракционной картине от одного отверстия не зависит от его положения. От большого числа N отверстий получается такая же картина, но усиленная в N раз.
В кристалле можно провести множество атомных плоскостей в различных направлениях (рис.3.4.34). Каждая система плоскостей может дать дифракционный максимум, если для нее будет выполнено условие Вульфа-Брэгга. Однако эффективными являются только такие плоскости, в которых атомы расположены плотно.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (6.583 сек.) |