|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Простая номинальная шкала
Номинальная шкала служит предпосылкой всех шкальных процедур. Она устанавливает отношения равенства между явлениями, которые включены в один класс. Пункты шкалы — эталоны качественной классификации свойств. Например, (А) рабочие ручного труда, не требующего специальной подготовки; (В) рабочие ручного труда высокой квалификации; (С) рабочие, занятые на механизированном оборудовании, средней квалификации; (D) рабочие механизированного труда высокой квалификации; (Е) автоматчики без навыков наладки; (F) пул ьтовики-наладчики. В этой шкале, каждому из пунктов которой дается детальная эмпирическая интерпретация (по индикаторам конечного перечня соответствующих профессий), интуитивно угадывается некоторый порядок: группы рабочих перечислены по мере повышения механизации труда и, возможно, по мере роста квалификации. Однако интуиция — не доказательство. Шкала остается неупорядоченной. Более явный пример — группировка по мотивам увольнения с работы: (а) не устраивал заработок; (b) неудобная сменность; (с) плохие гигиенические условия труда; (d) неинтересная работа и т. д. Упорядочить эти пункты невозможно: они не располагаются в континуум. Символическая запись номинальной неупорядоченной шкалы такова: (А) ^ (В) ^ (С) ^... ^ (К), где знак ^ означает дизъюнкцию (либо—либо). Операции с числами для номинальной шкалы следующие. 1. Нахождение частот распределения по пунктам шкалы с помощью процентирования или в натуральных единицах. Нетрудно подсчитать численность каждой группы и отношение этой численности к общему ряду распределения (частоты). 2. Поиск средней тенденции по модальной частоте. Модальный (Мо) называют группу с наибольшей численностью. Эти две операции (1) и (2) уже дают представление о распределении социальных характеристик в количественных показателях. Его наглядность повышается отображением в диаграммах (рис. 6, где А — модальная группа). Во всех трех случаях за 100% принята общая численность обследованных. Диаграмма 6, а позволяет, однако, отразить распределения, в которых сумма процентов превышает 100, т. е. некоторые обследуемые могут попасть в несколько секций шкалы одновременно (например, совмещают различные виды деятельности). 3. Самым сильным способом количественного анализа является в данном случае установление взаимосвязи между рядами свойств, расположенных неупорядоченно. С этой целью составляют перекрестные таблицы (схема 8). Помимо простой процентовки, в таблицах перекрестной классификации можно подсчитать критерий сопряженности признаков по Пирсону: хи-квадрат (х2) — простейший показатель обоснованности вывода о наличии или отсутствии связи между сопоставляемыми характеристиками, т. е. связанности качественных классификаций. Коэффициент Чупрова (Т-коэффициент) позволит по той же таблице определить напряженность связи, если хи-квадрат показывает, что она имеет место.12 12 Об использовании различных коэффициентов при работе с неупорядоченными номинальными шкалами см. [218, С. 189—172, 189—199]. Интересен метод, предложенный С. В. Чесноковым, который позволяет анализировать данные, фиксированные в номинальных шкалах, используя относительно "естественный" язык представления результатов, хорошо доступных неспециалистам [285]. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |