АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метрическая шкала равных интервалов

Читайте также:
  1. Алгебраическая и тригонометрическая формы записи комплексных чисел.
  2. Алгоритм метода покоординатного спуска решения задачи многомерной минимизации. Геометрическая иллюстрация.
  3. Алгоритм равных цен
  4. Анализ распределения судейских оценок для построения шкалы равных интервалов
  5. Анализ ситуации, приведшей к совершению противоправных действий.
  6. Барометрическая формула
  7. Барометрическая формула. Распределение Больцмана.
  8. Барометрическая формула. Распределение Больцмана.
  9. Барометрическая формула. Распределение Больцмана.
  10. Биометрическая аутентификация
  11. Биометрическая идентификация и аутентификация пользователей
  12. Возможные аварии на АЭС и их характеристики. Международная шкала оценки событий на АЭС. Особенности радиоактивного загрязнения ОС при авариях на АЭС

 

Класс метрических шкал, в отличие от номиналь­ных, устанавливает отношение между пунктами не про­сто в понятиях больше-меньше, но позволяет фиксиро­вать величину интервала. Заметим, однако, что исполь­зование метрических шкал в социологическом исследо­вании случается далеко не так часто, как порядковых.

Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно из­бранной величины.

Главная трудность в построении таких шкал — обо­снование равенства или разности дистанций между пунктами. Процедуры такого доказательства мы рас­смотрим в следующем разделе на примере шкалы Тёр-стоуна.

Неопытные исследователи принимают иногда за ин­тервальную шкалу шкалы балльных оценок. Но это псевдометрическая шкала. Так, один из вариантов псев­дошкалы с равными интервалами — "термометр обще­ственного мнения". Это шкала в 100 делений, где край­ние точки (100 и 0) словесно интерпретируются. Напри­мер, "если вы категорически согласны с приведенным суждением, укажите свое положение на термометре как 100°", "если вы категорически не согласны, укажите 0°. В действительности, нет оснований полагать, что лица, отметившие по термометру 35° и 42°, столь же различа­ются в своих оценках, как отметившие 45° и 52°. Интер­вал в Т (42°— 35° = 7 ° (52°— 45° = 7°) — чисто условный, так как одни люди обладают высокой способностью дифференцировать свои оценки, а другие вовсе не могут различать нюансы. Так что данная шкала меряет не что иное, как те же ранги, что и упорядоченная номиналь­ная, каковой она фактически и является.

В отличие от "термометра" общественного мнения шкалы Тёрстоуна имеют веские основания равенства интервалов, в чем мы дальше сможем убедиться.

Операции с числами в интервальной метрической шкале богаче, чем в номинальных шкалах.

1. Числа в таких шкалах остаются неизменными после линейных преобразований: у=ах+b. Начало (точка отсчета) на шкале избирается произвольно (b); также произвольно избирается размерная величина (а). Например, максимальный балл по шкале у=21, если раз­мерная величина а=2, число интервалов x=10 и отсчет начинается с b=1, т. е. ах+b=у, или 2x10+1=21. Ранги переменных на этой шкале равны в отношении "х" и "у". Это значит, что можно свободно менять точку отсче­та и числовое значение размерной величины. Например, от шкалы в 100 делений можем легко перейти к шкале с любым другим числом делений, притом отсчет можно начать с любой точки натурального ряда чисел. Так обычно переходят от измерения температуры по Цель­сию к термометру по Реомюру или Фаренгейту — ранги температур остаются прежними.

2. Появляются новые возможности корреляционно­го и регрессионного анализа. Вместо рангового коэффи­циента можно использовать более чувствительный ко­эффициент парной корреляции по Пирсону (г) и коэф­фициенты множественной корреляции. Последние хоро­ши тем, что позволяют соотнести (оценить) изменения в одной переменной с изменениями в другой или в це­лом ряде других переменных.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)