АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структура импульсного оптического рефлектометра и функции его элементов

Читайте также:
  1. B) социально-стратификационная структура
  2. F. Метод, основанный на использовании свойства монотонности показательной функции .
  3. HI. Лакан: структура детерминации
  4. I Психологические принципы, задачи и функции социальной работы
  5. I. Деньги и их функции.
  6. I. Структура интеллекта
  7. I. Функции
  8. I. Функции эндоплазматической сети.
  9. I.2. Структура оптимизационных задач
  10. II. 2. Ультраструктура бактериальной клетки
  11. II. Основные задачи и функции
  12. II. Основные задачи и функции

Блок - схема импульсного оптического рефлектометра приведенная на рис.5.2. Световые импульсы относительно большой мощности от встроенного в импульсный оптический рефлектометр источника (импульсного лазера) вводятся в тестируемое волокно через ответвитель, а высокочувствительный приемник измеряет временную зависимость мощности светового сигнала, возвращающегося из тестируемого волокна обратно в рефлектометр.

 

Зондирующий импульс

Рисунок 5.2 – Блок – схема импульсного оптического рефлектометра

 

Источниками зондирующих импульсов в подавляющем большинстве рефлектометров являются полупроводниковые лазеры с прямой модуляцией током накачки. Такие лазеры при фиксированном токе накачки генерируют световые импульсы фиксированной мощности и переменной длительности, задаваемой длительностью импульса тока накачки, вырабатываемого блоком управления. Применяются полупроводниковые лазеры, генерирующие импульсы длительностью от 1 нс до 10 мкс.

Блок управления вырабатывает импульсы тока накачки с частотой, задаваемой устанавливаемой вручную или определяемой автоматически максимальной длиной тестируемого участка ВОЛС. Одновременно на блок обработки данных подаются синхронизующие электрические импульсы.

Зондирующий световой импульс попадает в тестируемую ВОЛС через разветвитель с двумя рабочими входными и одним выходным портами. Обычно в качестве разветвителей используется устройство, выполняемое на основе четырехполюсника с двумя входными (1,2) и двумя выходными (3,4) портами, из которых задействованы только три (1,2,3). С двумя входными портами соединены импульсный лазер и приемный преобразователь, а с рабочим выходным портом соединяется тестируемый участок ВОЛС. Четвертый порт разветвителя не используется и закрыт специальным устройством, поглощающим падающее на него излучение без отражения.

С помощью этого же разветвителя сигнал обратного рассеяния от ВОЛС через порт (3) и порт (2) попадает на фотоприемник измерительного преобразователя. Измерительный преобразователь преобразует оптические сигналы в электрические так, что величина электрического тока преобразователя прямо пропорциональна мощности светового сигнала. В состав измерительного преобразователя наряду с фотоприемником входит смонтированный вместе с ним на одной плате и в одном корпусе предусилитель. Основные требования к приемному преобразователю – высокая чувствительность, малый уровень шумов и широкая полоса частот (последнее требование эквивалентно малой постоянной времени). Наряду с указанными требованиями приемный преобразователь должен иметь максимально возможную линейность преобразования в большом динамическом диапазоне мощностей светового сигнала.

Блок обработки данных – это мозг рефлектометра. В нем происходит обработка электрического сигнала от измерительного преобразователя и строится рефлектограмма, поступающая на дисплей. В этом же блоке осуществляются все виды автоматической обработки рефлектограмм и автоматических измерений.

Одним из основных компонентов блока обработки данных является схема измерения временных задержек. Поскольку расстояние до тестируемого участка ВОЛС определяется путем пересчета измеренной временной задержки соответствующего этому участку рассеянного или отраженного сигнала, то для получения высокой пространственной точности измерений необходимо обеспечить высокую точность измерения временных задержек. Для получения правильного значения расстояния при измерениях рефлектометром важно установить точное значение показателя преломления, т.к. расстояние равно произведению скорости света на групповую скорость, обратно пропорциональную величине показателя преломления волокна.

В современных рефлектометрах блок обработки данных состоит из аналогово-цифрового преобразователя и блока цифровой обработки – специализированного компьютера. Для уменьшения уровня шума и следовательно расширения динамического диапазона при сохранении пространственного разрешения в блоке цифровой обработки осуществляется накопление данных от большого числа отраженных сигналов. (Уровень шума уменьшается пропорционально корню квадратному из числа сигналов.)

Сформированная блоком обработки данных в электронном виде рефлектограмма подается на дисплей, либо обрабатывается в специальных блоках автоматической обработки и на дисплей подаются результаты обработки. Рефлектограмма может записываться в память рефлектометра, либо может сравниваться с хранящимися в памяти рефлектограммами.

В качестве источника излучения в оптическом рефлектометре обычно используются лазерные диоды типа Фабри – Перо, с их помощью генерируются импульсы мощностью 10 – 1000 мВт, длительностью от 2 нс – 20 мкс и частотой повторения несколько килогерц.

Длительности импульсов на входе τ и на выходе фотоприемника Δt связаны между собой соотношением:

 

Δt = [τ2 + (0,35/Δf)2]1/2, (8)

где Δf – ширина полосы фотоприемника.

Отсюда легко вывести выражение для ширины импульса:

 

Δu = Δt v/2 = [τ2 + (0,35/Δf)2]1/2 v/2. (9)

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)