АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Соответствие ОТО и классической механики

Читайте также:
  1. V1: Раздел 1. Физические основы механики
  2. А) Соответствие жилища потребностям человека.
  3. Административный менеджмент в классической теории организации и управления
  4. Анализ рынков в классической модели макроэкономического равновесия.
  5. Билет №31 Cовокупный спрос в неоклассической модели.
  6. В неоклассической модели
  7. В основе классической архитектуры ЭВМ лежат принципы ...
  8. В5. Установите правильное соответствие
  9. Взаимосвязь тождества Сэя и классической денежной теории.
  10. Вирус гриппа (классической чумы) кур.
  11. Вопрос 17. Проблема развития права в классической философии права. Г. Гегель: от права собственности к праву особенности.
  12. Вопрос 18. Проблема развития права в неклассической ФП. Гадамер Х.Г.: соотношение интерпретации и догматизации в развитии права.

Создание любой фундаментальной теории обычно порождает цикл новых проблем, вызванных необходимостью ее согласования с накопленным ранее (эмпирическим и теоретическим) массивом научного знания. Такое согласование состоит в пересмотре, изменении (и часто весьма радикальном) содержания ряда старых и создании новых представлений, понятий, категорий, теорий. Подобная ситуация сложилась и после возникновения СТО. Оно привело к необходимости обобщения классической ньютоновской теории гравитации и потребовало нового расширения принципа относительности.

Дело в том, что СТО не «стыковалась» с классической теорией тяготения: теория Ньютона построена на принципе дальнодействия, т.е. предполагала мгновенное распространение тяготения, а СТО базируется на представлении, что никакое воздействие не может передаваться со скоростью, превышающей скорость света в вакууме. Согласование СТО и теории тяготения Ньютона пошло по пути ограничения сферы применения ньютоновской теории гравитации (гравитационное поле не должно быть очень сильным, т.е. таким, которое не разгоняет частицы до релятивистских скоростей), а также обобщения и углубления содержания основных понятий классической теории тяготения. Это привело к созданию А. Эйнштейном в 1915—1916 гг. новой (неклассической) теории гравитации — общей теории относительности (ОТО). Здесь в центре внимания оказалось понятие неинерциальных систем отсчета.

И классическая физика, и СТО формулируют закономерности физических процессов и явлений только для очень узкого класса так называемых инерциальных систем, которые либо покоятся, либо движутся прямолинейно и равномерно друг по отношению к другу; именно в них соблюдается принцип инерции, и по отношению к ним выполняются принцип относительности и законы механики.

Инерциальной системы — это научная абстракция, которой по существу никакая реальная система абсолютно не соответствует, поскольку реальные системы так или иначе включены в различные ускоренные (обычно вращательные) движения. Инерциальные системы выделяются лишь с той или иной степенью приближения. Все реальные системы — неинерциальные. Неинерциальная система определяется как система отсчета, которая движется с ускорением по отношению к инерциальной системе. В неинерциальных системах отсчета не выполняются ни принцип инерции, ни законы механики. Потому глубочайшая задача физики состоит в том, чтобы распространить ее законы с инерциальных систем на неинерциальные. Но как осуществить такое распространение?

Возможность такого распространения Эйнштейн увидел на пути обобщения принципа относительности движения, т.е. распространения его не только на скорость, но и на ускорение движущихся систем. Если не приписывать абсолютный характер ускорению, то выделенность класса инерциальных систем потеряет свой смысл и можно формулировать физические законы таким образом, чтобы они относились к любой системе координат. В этом и заключается общий принцип относительности.

Из него следует, что точно так же, как нельзя говорить о скорости тела вообще безотносительно к какому-нибудь телу, так, очевидно, и ускорение имеет конкретный смысл по отношению к некоторому фактору, вызывающему и определяющему его.

До Эйнштейна существовали две точки зрения на причины, порождающие инерциальные силы в ускоренных системах. Ньютон считал, что таким фактором является абсолютное пространство, а Э. Мах — действие общей массы Вселенной. Эйнштейн пошел по иному пути. Он усмотрел такой фактор в эквивалентности сил инерции и сил тяготения (инертной и гравитационной масс). На заре классической механики было установлено, что существует два независимых способа определения массы тела. Первый способ: согласно второму закону динамики m = F / а, где F— сила, прилагаемая к телу (инертная масса); а — ускорение, которое вызывает эта сила. Здесь масса является сопротивлением тела приложенной к нему силе, мерой его инерции.

Второй способ: через закон всемирного тяготения, силу тяготения (гравитационная масса). Здесь масса – это источник поля тяготения. С одной стороны, она создает такое поле, а с другой – сама испытывает воздействие поля тяготения, создаваемого другими телами. При этом гравитационная масса не зависит от ускорения тела в поле тяготения, а определяется только силой тяготения.

Дело в том, что поле тяготения совершенно одинаково действует на различные тела, сообщая им одинаковые ускорения независимо от их массы, химического состава и других свойств, а в зависимости лишь от напряженности поля. Сила тяготения определяется массой тела, а ускорение тела в поле тяготения массой тела не определяется. Тела с разной массой (если их начальные скорости одинаковы) в данном поле тяготения движутся одинаково.

Таким образом, ниоткуда не следует, что гравитационная масса, которая создает поле тяготения, должна одновременно определять и инерцию тела, меру его сопротивления действию силы. Вместе с тем существует поразительная закономерность – количественное тождество гравитационной и инертной масс. Многочисленные опыты показали, что инертная и гравитационная массы эквивалентны друг другу.

После создания СТО и открытия зависимости инертной массы от скорости (релятивистские эффекты) вопрос о независимости гравитационной массы от любых свойств тел и состояний, в которых они находятся, предстал в новом свете. Из СТО следует, что инертная масса зависит от скорости, с увеличением скорости масса тела растет: проблема усложняется тем, что с массой всегда связана и энергия: Е = mс2. А значит с изменяющейся массой должна изменяться энергия: Эйнштейн обращается к этой проблематике и задумывается над тем, не обладает ли энергия также гравитационной массой. И уже в 1911 г. приходит к новым идеям, которые затем легли в основу общей теории относительности.

В центре его размышлений оказался вопрос: можно ли оценивать движение равноускоренной системы S' по отношению к инерциальной системе S как пребывание в относительном покое? Теоретический анализ подводит его к выводу, что две системы отсчета, одна из которой движется ускоренно, а другая хотя и покоится, но в ней действует однородное поле тяготения, в отношении механических явлений эквивалентны и неразличимы. Иначе говоря, физика не знает средств, которые могли бы отличить эффект гравитации от эффекта ускорения. Силы инерции в ускоренной системе отсчета эквивалентны гравитационному полю. Это утверждение Эйнштейн иллюстрирует примером: наблюдатель, находящийся в закрытом лифте, не может определить, движется ли лифт ускоренно или внутри лифта действуют силы тяготения. Эквивалентность, существующую между ускорением и однородным полем тяготения, которая справедлива для механики, Эйнштейн считает возможным распространить на любые физические явления. Этот расширенный принцип эквивалентности и был положен им в основу общей теории относительности.

Проведя мысленные эксперименты, Эйнштейн пришел к выводу, что реальное гравитационное поле будет эквивалентно ускоренным системам только в том случае, если пространство-время является искривленным, т.е. неевклидовым: «Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения ОТО стремятся раскрыть геометрические свойства нашего мира». Великий физик исходил из того, что пространственно-временной континуум носит риманов характер. А римановым (в узком смысле) называется пространство постоянной положительной кривизны. Его наглядный образ — поверхность обычной сферы, на которой кратчайшая линия не является прямой.

 

5. Эмпирические доказательства ОТО:


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)