АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Структурный синтез и анализ механизмов

Читайте также:
  1. II. Методы непрямого остеосинтеза.
  2. II. Основные проблемы, вызовы и риски. SWOT-анализ Республики Карелия
  3. III. Анализ продукта (изделия) на качество
  4. III. Анализ результатов психологического анализа 1 и 2 периодов деятельности привел к следующему пониманию обобщенной структуры состояния психологической готовности.
  5. IV. Современные методы синтеза неорганических материалов с заданной структурой
  6. IX. Дисперсионный анализ
  7. Oанализ со стороны руководства организации.
  8. SWOT- анализ и составление матрицы.
  9. SWOT-анализ
  10. SWOT-анализ
  11. SWOT-анализ
  12. SWOT-анализ в качестве универсального метода анализа.

Структурный синтез механизма состоит в проектировании его структурной схемы, под которой понимается схема механизма, ука­зывающая стойку, подвижные звенья, виды кинематических пар и их взаимное расположение.

Метод структурного синтеза механизмов, предложенный русским ученым Л.В.Ассуром в 1914 г., состоит в следующем: механизм мо­жет быть образован путем наслоения структурных групп к одному или нескольким начальным звеньям и стойке.

Структурной группой (группой Ассура) на­зывается кинематическая цепь, число степеней свободы которой равно нулю после присоединения ее внешними кинематическими па­рами к стойке и которая не распадается на более простые цепи, удовлетворяющие этому условию.

Принцип наслоения иллюстрируется на примере образования 6-звенного рычажного механизма (рис. 1.3).

- угол поворота кривошипа (обобщенная координата).

Для структурных групп плоских механизмов с низшими парами

, откуда ,

где W–число степеней свободы; n – число подвижных звеньев; Рn – число низших пар.

Этому соотношению удовлетворяют следующие сочетания (табл.1.2)

В роли одноподвижных па.р выступают низшие пары.

Таблица 1.2

n      
Pn      

Простейшей является структурная группа, у которой n = 2 и Pн = 3. Она называется структурной группой второго класса.

Порядок структурной группы определяется числом эле­ментов ее внешних кинематических пар, которыми она может присо­единяться к механизму. Все группы второго класса имеют второй порядок.

Структурные группы, у которых n = 4 и Рn = 6, могут быть третьего или четвертого класса (рис. 1.4)

Класс структурной группы в общем случае определяется числом кинематических пар в замкнутом контуре, образованном внутренними кинематическими парами.

Класс механизма определяется высшим классом структурной группы, входящей в его состав.

Порядок образования механизма записывается в виде формулы его строения. Для рассмотренного примера (рис.1.3):

механизм второго класса. Римскими циф­рами указывается класс структурных групп, а арабскими – номера звеньев, из которых они образованы. Здесь обе структурные груп­пы относятся ко второму классу, второму порядку, первому виду.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)