АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Представление графа списком инцидентности. Алгоритм обхода графа в глубину

Читайте также:
  1. XII. ЭЛЕМЕНТЫ ТЕОРИИ АЛГОРИТМОВ
  2. АКТУАЛЬНЫЕ АСПЕКТЫ ПАТОГЕНЕЗА ВОСПАЛЕНИЯ. СОВРЕМЕННОЕ ПРЕДСТАВЛЕНИЕ О ПАТОГЕНЕЗЕ СЕПСИСА И СИНДРОМА СИСТЕМНОГО ВОСПАЛИТЕЛЬНОГО ОТВЕТА
  3. Алгоритм
  4. Алгоритм MD4
  5. Алгоритм RC6
  6. Алгоритм RSA
  7. Алгоритм Брезенхема для окружности
  8. Алгоритм Брезенхема.
  9. Алгоритм взятия мазка из носа и зева.
  10. Алгоритм вибіркового методу
  11. Алгоритм вставки элемента в список после элемента с указанным ключом
  12. Алгоритм выполнения прически

Для реализации графа в виде списка инцидентности можно использовать следующий тип:

Type List = ^S;

S = record;

inf: Byte;

next: List;

end;

Тогда граф задается следующим образом:

Var Gr: array[1..n] of List;

Теперь обратимся к процедуре обхода графа. Это вспомогательный алгоритм, который позволяет просмотреть все вершины графа, проанализировать все информационные поля. Если рассматривать обход графа в глубину, то существуют два типа алгоритмов: рекурсивный и нерекурсивный.

При рекурсивном алгоритме обхода графа в глубину мы берем произвольную вершину и, отыскиваем произвольную непросмотренную (новую) вершину v, смежную с ней. Затем принимаем вершину v за неновую и отыскиваем любую смежную с ней новую вершину. Если же у какой-либо вершины нет более новых непросмотренных вершин, то полагаем эту вершину использованной и возвращаемся на уровень выше в ту вершину, из которой попали в нашу использованную вершину. Обход продолжается таким образом до тех пор, пока в графе не останется новых непросмотренных вершин.

На языке Pascal процедура обхода в глубину будет выглядеть следующим образом:

Procedure Obhod(gr: Graph; k: Byte);

Var g: Graph; l: List;

Begin

nov[k]:= false;

g:= gr;

While g^.inf <> k do

g:= g^.next;

l:= g^.smeg;

While l <> nil do begin

If nov[l^.inf] then Obhod(gr, l^.inf);

l:= l^.next;

End;

End;

Примечание

В данной процедуре при описании типа Graph имелось в виду описание графа списком списков. Массив nov[i] – специальный массив, i-ый элемент которого равен True, если i-ая вершина не просмотрена, и False – в противном случае.

Также часто используется нерекурсивный алгоритм обхода. В этом случае рекурсия заменяется на стек. Как только вершина просмотрена, она помещается в стек, а использованной она становится, когда больше нет новых вершин, смежных с ней.

Представление графа списком списков. Алгоритм обхода графа в ширину

Граф можно определить с помощью списка списков следующим образом:

Type List = ^Tlist;

Tlist = record

inf: Byte;

next: List;

end;

Graph = ^TGpaph;

TGpaph = record

inf: Byte;

smeg: List;

next: Graph;

end;

При обходе графа в ширину мы выбираем произвольную вершину и просматриваем сразу все вершины, смежные с ней. Вместо стека используется очередь. Алгоритм обхода в ширину очень удобен при нахождении наикратчайшего пути в графе.

Приведем процедуру обхода графа в ширину на псевдокоде:

Procedure Obhod2(v);

{величины spisok, nov – глобальные}

Begin

queue = O;

queue <= v;

nov[v] = False;

While queue <> O do

Begin

p <= queue;

For u in spisok(p) do

If nov[u] then

Begin

nov[u]:= False;

queue <= u;

End;

End;

End;


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)