АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Средний арифметический индекс

Читайте также:
  1. Индекс как показатель центральной тенденции (индекс средний из индивидуальных)
  2. Крупный, средний и малый бизнес в экономике страны
  3. Общий, средний и предельный продукты предприятия. Закон убывающий производительности.
  4. Общий, средний и предельный продукты предприятия. Закон убывающий производительности.
  5. Продолговатый мозг и варолиев мост и средний мозг.
  6. Продукт как результата производства фирмы. Общий, средний и предельный продукт фирмы.
  7. Продукт фирмы. Общий, средний и предельный продукт и их динамика
  8. Совокупный, средний и предельный доходы (при изменяющихся ценах)
  9. Средний балл выраженности учебных интересов по группам
  10. Средний Запад США
  11. Средний и агрегатный индекс

Помимо агрегатных индексов в статистике применяются средневзвешенные индексы. К их исчислению прибегают тогда, когда имеющаяся в распоряжении информация не позволяет рассчитать общий агрегатный индекс.
Средний индекс - это индекс, вычисленный как средняя величина из индивидуальных индексов. Он должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая. Среднеарифметический индекс тождествен агрегатному, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного по формуле средней арифметической, будет равна агрегатному индексу.
Рассмотрим преобразование агрегатного индекса в среднеарифметический на примере агрегатного индекса физического объема товарооборота. В этом случае индивидуальные индексы должны быть взвешены на базисные соизмерители. Из индивидуального индекса физического объема товарооборота следует, что q1= iqq0. Заменив q1 в числителе агрегатного индекса физического объема товарооборота (2.4) на iqq0, получим среднеариметический индекс физического объема продукции:

 
   

 

 
          (2.6)
             
             

Среднеарифметический индекс трудоемкости производства продукции определяется следующим образом:

It= ∑itT0 = ∑itt0q0     (2.7)
∑T0 ∑t0q0          

Поскольку it · to= t1, то формула этого индекса может быть преобразована в агрегатный индекс трудоемкости продукции. Весами являются общие затраты времени на производство продукции или численность работников в базисном периоде.
В статистике широко известен и среднеарифметический индекс производительности труда. Он носит название индекса Струмилина и определяется следующим образом:

It= ∑itT1         (2.8)
∑T1            

Индекс показывает, во сколько раз возросла (уменьшилась) производительность труда или сколько процентов составил рост (снижение) производительности труда в среднем по всем единицам исследуемой совокупности.
Среднеарифметические индексы чаще всего применяются на практике для расчета сводных индексов количественных показателей.

34.Среднегармонический индекс

35.Показатели вариации.

ариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:

§ размах вариации

§ среднее линейное отклонение

§ дисперсию

§ среднее квадратическое отклонение


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)