|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Контрольные работыЗадача 1. Трехступенчатый брус жестко закрепленный одним концом загружен сосредоточенными силами F1, F2 и собственным весом (рис.1). Требуется: 1) написать аналитические выражения нормальных сил (N), нормальных напряжений (σ) и абсолютных удлинений (∆l) для каждого силового участка; 2) определить значения N и σ для характерных сечений и ∆l для силовых участков; 3) определить перемещения границ силовых участков (δ); 4) построить эпюры N, σ, δ. Данные взять из табл.2. Принять Е = Па.
Рисунок 1 – Схемы брусьев Таблица 2
Задача 2. Абсолютно жесткий брус опирается на шарнирно неподвижную опору и прикреплен к двум стержням с помощью шарниров (рис. 2). Требуется: 1) найти усилия и напряжения в стержнях, выразив их через силу Q; 2) найти допускаемую нагрузку Qдоп, приравняв большее из напряжений в двух стержнях допускаемому напряжению [ ] = 160 МПа; 3) найти предельную грузоподъемность системы Qyк и допускаемую нагрузку Qдоп, если предел текучести y = 240 МПа и запас прочности k= l,5; 4) сравнить величины Qдоп, полученные при расчете по допускаемым напряжениям (см. п. 2) и допускаемым нагрузкам (см.п.3).Данные взять из табл. 3 Рисунок 2 – Расчётные схемы Таблица 3
Указания. Для определения двух неизвестных усилий в стержнях следует составить одно уравнение статики и одно уравнение деформаций. Для ответа на третий вопрос задачи следует иметь в виду, что в одном из стержней напряжение больше, чем в другом; условно назовем этот стержень первым. При увеличении нагрузки напряжение в первом стержне достигнет предела текучести раньше, чем во втором. Когда это произойдет, напряжение в первом стержне не будет некоторое время расти даже при увеличении нагрузки, система станет как бы статически определимой, нагруженной силой Q (пока еще неизвестной) и усилием в первом стержне: . (1) При дальнейшем увеличении нагрузки напряжение и во втором стержне достигнет предела текучести: . (2) Написав уравнение статики и подставив в него значения усилий (1) и (2), найдем из этого уравнения предельную грузоподъемность Qку. Задача 3. К стальному валу приложены три известных момента: М1, M2, M3 (рис. 3). Требуется:1) установить, при каком значении момента X угол поворота правого концевого сечения вала равен нулю; 2) построить эпюру крутящих моментов; 3)при заданном значении Rср определить диаметр вала из расчета на прочность и округлить его до ближайшей большей величины, соответственно равной 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 мм; 4) построить эпюру углов закручивания; 5) найти наибольший относительный угол закручивания (на 1 м длины). Данные взять из табл. 4. Таблица 4
Рисунок 3 – Схемы стальных валов Задача 4. Для заданного в табл. 5 поперечного сечения, состоящего из двутавра, равнобокого уголка и швеллера (рис. 4), требуется: 1) определить положение центра тяжести; 2) найти осевые (экваториальные) и центробежный моменты инерции относительно случайных осей, проходящих через центр тяжести (Xc и Yc ); 3) определить направление главных центральных осей (и и n); 4) найти моменты инерции относительно главных центральных осей; 5) вычертить сечение в масштабе 1:2 и указать на нем все размеры в числах и все оси. При расчете все необходимые данные следует брать из таблиц сортамента и ни в коем случае не заменять части профилей прямоугольниками. Таблица 5
Рисунок 4 – Схемы поперечных сечений Задача 5. Для заданных двух схем балок (рис. 5) требуется написать выражения Qи М для каждого участка в общем виде, построить эпюры Q и М, найти Мmax и подобрать: а) для схемы а деревянную балку круглого поперечного сечения при R = 10 МПа; б) для схемы б — стальную балку двутаврового поперечного сечения при R = 200 МПа. Данные взять из табл. 6.
Таблица 6
Рисунок 5 – Схемы балок
Рисунок 5 – Схемы балок (продолжение)
Задача 6. Определить прогиб свободного конца балки переменного сечения (рис. 6). Данные взять из табл. 7. Указания. Проще всего задачу можно решить графоаналитическим методом, построив эпюру M/EJ и приняв ее за фиктивную нагрузку. Левый конец фиктивной балки должен быть свободен, а правый – защемлен.
Рисунок 6 – Схемы балок переменного сечения Таблица 7
Задача 7. Для балки, изображенной на рис. 7, требуется: 1) найти изгибающий момент на левой опоре (в долях ql2); 2) построить эпюры Q и М; 3)построить эпюру прогибов, вычислив три ординаты в пролете и две – на консоли. Данные взять из табл.7 Указания. Для ответа на первый вопрос нужно выбрать основную систему в виде свободно лежащей на двух опорах балки и составить уравнение деформаций, выражающее мысль, что суммарный угол поворота на левой опоре от заданной нагрузки и от опорного момента равен нулю. Можно также решить задачу иначе, составив два уравнения: 1) уравнение статики в виде суммы моментов всех сил относительно правой опоры; 2) уравнение метода начальных параметров, выражающее мысль, что прогиб на правой опоре равен нулю. Из этих двух уравнений можно найти изгибающий момент и реакцию на левой опоре. Для ответа на третий вопрос целесообразнее использовать метод начальных параметров, так как два начальных параметра (у0 и q0) известны. При построении эпюры прогибов надо учесть, что упругая линия балки обращена выпуклостью вниз там, где изгибающий момент положительный, и выпуклостью вверх там, где он отрицательный. Нулевым точкам эпюры М соответствуют точки перегиба упругой линии.
Рисунок 7 – Схемы балок
Задача 8. Короткая бетонная колонна, поперечное сечение которого изображено на рис. 8, сжимается продольной силой F, приложенной в точке А. Требуется:1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив эти напряжения через F и размеры сечения; 2) найти допускаемую нагрузку F при заданных размерах сечения и расчётных сопротивлениях для материала на сжатие Rc и на растяжение Rp. Данные взять из табл. 8.
Рисунок 8 – Схемы колонн Таблица 8
Задача 9. На рис. 9 изображена в аксонометрии ось ломаного стержня круглого поперечного сечения, расположенная в горизонтальной плоскости, с прямыми углами в точках A и В. На стержень действует вертикальная нагрузка. Требуется: 1) построить отдельно (в аксонометрии) эпюры изгибающих и крутящих моментов; 2) установить опасное сечение и найти для него расчетный момент по четвертой теории прочности. Данные взять из табл. 9. Рисунок 9 – Схемы ломаных стержней Таблица 9
Задача 10. Стальная стойка длиной l сжимается силой F. Требуется: 1) найти размеры поперечного сечения при расчётном сопротивлении на простое сжатие R = 200 МПа (расчет производить последовательными приближениями, предварительно задавшись коэффициентом j=0,5); 2) найти значение критической силы и коэффициент запаса устойчивости. Данные взять из табл. 10.
Задача 11. На двутавровую балку, свободно лежащую на двух жестких опорах (рис. 10), с высоты h падает груз Q. Требуется: 1) найти наибольшее нормальное напряжение в балке; 2) решить аналогичную задачу при условии, что правая опора заменена пружиной, податливость которой (т. е. осадка от груза 1 кН) равна a; 3) сравнить полученные результаты. Данные взять из табл. 11 Указание: При наличии упомянутой в п. 2 пружины Dст=Dб+bDпр, где Dб—прогиб балки, лежащей на жестких опорах, в том сечении, где приложена сила Q (при статическом действии этой силы); Dпр — осадка пружины от реакции, возникающей от силы Q; b — коэффициент, устанавливающий зависимость между осадкой пружины и перемещением точки приложения силы Q, вызванным поворотом всей балки вокруг центра шарнира левой опоры как жесткого целого(коэффициент b находят из подобия треугольников).
Рисунок 10 – Схемы балок Таблица 11
Учебное издание
Составители: Соловей Павел Иванович
Хвисевич Виталий Михайлович
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.017 сек.) |