|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
По типу усилительных элементов различают: ламповые и транзисторные усилителиПо назначению различают: усилители напряжения, усилители тока и усилит ли мощности. По диапазону усиливаемых частот различают: усилители низкой частоты (УНЧ) 20 Гц–20 кГц, усилители высокой частоты (УВЧ) от 100 кГц и выше; усилители постоянного тока, усилители медленно изменяющихся колебаний в диапазоне частот от 0 до 20 Гц. По числу усилительных каскадов различают: однокаскадные и многокаскадные усилители. Каскад усилителя – это устройство, состоящее из одного активного элемента и пассивных вспомогательных элементов (резисторы, емкости и т.п.). § По типу связей между каскадами различают: резистивно–емкостную связь, трансформаторную и непосредственную (гальваническую). Любой усилитель имеет две пары зажимов: входные и выходные. К входным зажимам подключают слабый сигнал. В выходной цепи выделяют усиленный сигнал. 1. источник слабого входного сигнала; 2. усилитель; 3. источник энергии, за счет которой усиливается сигнал; 4. нагрузка, в которой выделяется усилительный сигнал. Основным параметром, характеризующим работу усилителя, является коэффициентом усиления (К), который показывает, во сколько раз сигнал в выходной цепи отличается от сигнала входной цепи.
Различают три схемы включения транзисторов: с общей базой, с общим коллектором, с общим эмиттером. Схема включения с общей базой – это значит, что база является общим электродом для входной цепи (ЭБ) и выходной цепи (КБ). Основным параметрами характеризующими работу усилителя, является коэффициент усиления.
Схема с общей базой , т.е. по напряжению сигнал усиливается. , т.к. Iэ = Iб + Iк т.е. по току сигнал ослабляется. небольшое усиление мощности Схема с общим коллектором
Схема с общим эмиттером
Схема включения с общим эмиттером нашла наибольшее применение, т.к. позволяет получить усиление входного сигнала по напряжению, по мощности, по току.
9. Тиристор
Тиристор – это четырехслойный полупроводниковый прибор с тремя р-n переходами, обладающий вентильными свойствами. Изготавливается из кремния, бывает только плоскостным. Различают два вида тиристоров р-n-р-n и n-р-n-р. Тиристор с двумя выводами от двух крайних областей, называется динистором.
В обратном направлении (при малых напряжениях) тиристор не проводит ток, т.к. переходы П 1 и П 3 закрыты. При включении прямого напряжения, переходы П 1 и П 3 открываются, и через тиристор проходит малый обратный ток, т.к. переход П 2 закрыт. При увеличении прямого напряжения, напряженность электрического поля вблизи перехода П 2 увеличивается, и при некотором напряжении возникает лавинный пробой перехода П 2. В результате чего сопротивление перехода П 2 резко падает и через тиристор начинает протекать ток, обусловленный движением основных носителей. Тиристор отличается от полупроводникового диода лишь тем, что он начинает проводить ток только при достаточно больших прямых напряжениях. В управляемом тиристоре сделан третий вывод от области, прилежащей к переходу П 2. Подавая импульс тока на управляющий электрод (УЭ), напряженность электрического поля вблизи П 2 увеличивается и, значит, при меньших значениях прямого напряжения, переход П 2 открывается. Изменяя величину тока, подаваемого на управляющий электрод, можно управлять моментом включения тиристора. Тиристоры применяются: Ø в схемах управляемых выпрямителей; Ø в устройствах автоматики в качестве «ключей». ТЕМА: «Фотоэлектронные приборы»
Фотоэлектронные приборы – это приборы, у которых под действием световой энергии изменяются электрические свойства: проводимость, сопротивление, ЭДС. По принципу действия фотоэлектронные приборы делятся на приборы: ü работа, которых основана на внешнем фотоэффекте; ü работа, которых основана на внутреннем фотоэффекте. Внешний фотоэффект (фотоэлектронная эмиссия) – явление выхода электронов из металла, при его освещении. Внутренний фотоэффект – явления увеличения концентрации свободных носителей внутри материала при его освещении. Внутренний фотоэффект наблюдается в полупроводниках, диэлектриках.
10. Фотоэлементы с внешним фотоэффектом
Устройство: ФЭ состоит из стеклянного баллона, в котором создан вакуум, или наполненного газом, внутренняя полусфера которого покрыта светочувствительным слоем (фотокатодом) и анода, изготовленного из никелевой проволоки в виде кольца. Если фотоэлемент не освещен, то в баллоне нет свободных носителей и тока тоже нет. При освещении ФЭ с поверхности фотокатода вылетают электроны, которые под действием электрического поля притягиваются к аноду, создавая в цепи фототок. Величина фототока зависит от светового потока и величины подводимого напряжения. Фотоэлементы применяются в различных схемах фотореле:
Ø в устройстве ввода в ЭВМ; Ø фотоблокировка в прессах; Ø управление включением и выключением освещения; Ø в метро: в турникетах и электронных часах, измеряющих интервал движения для контроля обрывности нитей; Ø в ткацких станках; Ø для подсчета количества и определения качества продукции.
11. Фоторезистор
Фоторезистор – прибор, у которого под действием света изменяется электрическое сопротивление. Представляет собой диэлектрическое основание, на которое наносят тонкий слой светочувствительного полупроводника, два электрода с выводами помещают в корпус. Если ФР не освещен, то через него проходит небольшой темновой ток. При освещении ФР ковалентные связи разрушаются, появляются свободные электроны и дырки и сопротивление ФР уменьшается. Применяется в схемах фотореле. 12. Солнечные фотоэлементы (фотодиоды)
Фотодиод – это полупроводниковый фотоэлемент, у которого под действием света наводится фото-э.д.с. Т.е световая энергия непосредственно преобразуется в электрическую. Работа фотодиода основана на возникновении фото-э.д.с. в области контакта двух полупроводников р- и n -типа (р-n перехода).
Применяется в качестве источника электрической энергии для питания: космических кораблей, электромобилей, калькуляторов, часов и т.д.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |