АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Вопрос№43 Дисперсия света

Читайте также:
  1. V. ОСНОВНАЯ ПРАКТИКА ЯСНОГО СВЕТА
  2. А) Спектр света и значение разного типа излучений
  3. Будьте добры, пролейте несколько больше света по поводу темноты.
  4. Визуализируй вспышку света, перепрыгивающего с одной чакры на другую.
  5. Визуализируй лучи света, поднимающиеся вдоль твоего позвоночника
  6. Волновая и корпускулярная природа света
  7. Волновые свойства света. Электромагнитная теория света.
  8. Вопрос 25 Дисперсия света. Методы наблюдения. Электронная теория дисперсии света. Спектры
  9. Вопрос 51 Интерференция света в тонких пленках
  10. Вопрос 52 Дифракция света
  11. Вопрос 55 Способы получения поляризованного света
  12. Вопрос№42 Законы отражения света. Полное отражение света

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν(длины волн λ) света или зависимость фазовой скорости световых волн от их частоты.

Дисперсия света представляется в виде зависимости:

или .

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

.

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

  , (10.1.1)  

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n, а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы. Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим, что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн, поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно. Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Рис. 10.3

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества, показывает, как быстро меняется показатель преломления с длиной волны.

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной. Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией. Рассмотрим подробнее эти виды дисперсии.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)