АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Некоторые методы статистического анализа данных при вторичной обработке

Читайте также:
  1. II. Методы непрямого остеосинтеза.
  2. II. Организация и этапы статистического исследования
  3. III. Анализ результатов психологического анализа 1 и 2 периодов деятельности привел к следующему пониманию обобщенной структуры состояния психологической готовности.
  4. IV. Современные методы синтеза неорганических материалов с заданной структурой
  5. SWOT-анализ в качестве универсального метода анализа.
  6. VII. Вопросник для анализа учителем особенностей индивидуального стиля своей педагогической деятельности (А.К. Маркова)
  7. А. Механические методы
  8. Абстрактные структуры данных
  9. Автоматизированная система обработки данных правовой статистики
  10. Автоматизированные методы анализа устной речи
  11. Авторское право - правовое положение авторов и созданных их творческим трудом произведений литературы, науки и искусства.
  12. Адаптивные методы прогнозирования

Внедрение в научные исследования вычислительной техники позволяет быстро и точно определять любые количественные характеристики любых массивов данных. Разработаны различные программы для ЭВМ, по которым можно проводить соответствующий статистический анализ практически любых выборок. Из массы статистических приемов в психологии наибольшее распространение получили следующие.

Комплексное вычисление статистик

По стандартным программам производится вычисление различных совокупностей статистик. Как основных, представленных нами выше, так и дополнительных, не включенных в наш обзор. Иногда получением этих характеристик исследователь и ограничивается. Чаще же совокупность этих статистик представляет собой лишь блок, входящий в более широкое множество показателей изучаемой выборки, получаемое по более сложным программам. В том числе по программам, реализующим приводимые ниже методы статистического анализа.

Корреляционный анализ

Сводится к вычислению коэффициентов корреляции в самых разнообразных соотношениях между переменными. Соотношения задаются исследователем, а переменные равнозначны, т. е. что являются причиной, а что следствием, установить через корреляцию невозможно. Кроме тесноты и направленности связей' метод позволяет установить форму связи (линейность, нелинейность). Надо заметить, что нелинейные связи не поддаются анализу общепринятыми в психологии математическими и статистическими методами. Данные, относящиеся к нелинейным зонам (например, в точках разрыва связей, в местах скачкообразных изменений), характеризуют через содержательные описания, воздерживаясь от формально-количественного их представления. Иногда для описания нелинейных явлений в психологии удается применить непараметрические математико-статистические методы и модели. Например, используется математическая теория катастроф.

Дисперсионный анализ

В отличие от корреляционного анализа этот метод позволяет выявлять не только взаимосвязь, но и зависимости между переменными, т. е. влияние различных факторов на исследуемый признак. Это влияние оценивается через дисперсионные отношения. Изменение изучаемого признака (вариативность) может быть вызвано действием отдельных известных исследователю факторов, их взаимодействием и воздействиями неизвестных факторов. Дисперсионный анализ позволяет обнаружить и оценить вклад каждого из этих влияний на общую вариативность исследуемого признака. Метод позволяет быстро сузить поле влияющих на изучаемое явление условий, выделив наиболее существенные из них. Таким образом, дисперсионный анализ – это «исследование влияния переменных факторов на изучаемую переменную по дисперсиям». В зависимости от числа влияющих переменных различают одно-, двух-, многофакторный анализ, а в зависимости от характера этих переменных – анализ с постоянными, случайными или смешанными эффектами. Дисперсионный анализ широко применяется при планировании эксперимента.

Факторный анализ

Метод позволяет снизить размерность пространства данных, т. е. обоснованно уменьшить количество измеряемых признаков (переменных) за счет их объединения в некоторые совокупности, выступающие как целостные единицы, характеризующие изучаемый объект. Эти составные единицы и называют в данном случае факторами, от которых надо отличать факторы дисперсионного анализа, представляющие собой отдельные признаки (переменные). Считается, что именно совокупность признаков в определенных комбинациях может характеризовать психическое явление или закономерность его развития, тогда как по отдельности или в других комбинациях эти признаки не дают информации. Как правило, факторы не видны на глаз, скрыты от непосредственного наблюдения. Особенно продуктивен факторный анализ в предварительных исследованиях, когда необходимо выделить в первом приближении скрытые закономерности в исследуемой области. Основой анализа является матрица корреляций, т. е. таблицы коэффициентов корреляции каждого признака со всеми остальными (принцип «все со всеми»). В зависимости от числа факторов в корреляционной матрице различают однофакторный (по Спирмену), бифакторный (по Холзингеру) и многофакторный (по Тёрстону) анализы. По характеру связи между факторами метод делится на анализ с ортогональными (независимыми) и с облическими (зависимыми) факторами. Существуют и иные разновидности метода. Весьма сложный математический и логический аппараты факторного анализа часто затрудняют выбор адекватного задачам исследования варианта метода. Тем не менее популярность его в научном мире растет с каждым годом.

Регрессионный анализ

Метод позволяет изучать зависимость среднего значения одной величины от вариаций другой (других) величины. Специфика метода заключается в том, что рассматриваемые величины (или хотя бы одна из них) носят случайный характер. Тогда описание зависимости распадается на две задачи: 1) выявление общего вида зависимости и 2) уточнение этого вида путем вычисления оценок параметров зависимости. Для решения первой задачи стандартных методов не существует и здесь производится визуальный анализ корреляционной матрицы в сочетании с качественным анализом природы исследуемых величин (переменных). Это требует от исследователя высокой квалификации и эрудиции. Вторая задача, по сути, есть нахождение аппроксимирующей кривой. Чаще всего эта аппроксимация осуществляется с помощью математического метода наименьших квадратов. Идея метода принадлежит Ф. Гальтону, заметившему, что у очень высоких родителей дети были несколько меньше ростом, а у очень маленьких родителей – дети более рослые. Эту закономерность он и назвал регрессией.

Таксономический анализ

Метод представляет собой математический прием группировки данных в классы (таксоны, кластеры) таким образом, чтобы объекты, входящие в один класс, были более однородны по какому-либо признаку по сравнению с объектами, входящими в другие классы. В итоге появляется возможность определить в той или иной метрике расстояние между изучаемыми объектами и дать упорядоченное описание их взаимоотношений на количественном уровне. В силу недостаточной проработанности критерия эффективности и допустимости кластерных процедур данный метод применяется обычно в сочетании с другими способами количественного анализа данных. С другой стороны, и сам таксономический анализ используется как дополнительная страховка надежности результатов, полученных с использованием других количественных методов, в частности факторного анализа. Суть кластерного анализа позволяет рассматривать его как метод, явно совмещающий количественную обработку данных с их качественным анализом. Поэтому причислить его однозначно к разряду количественных методов, видимо, не правомерно. Но поскольку процедура метода по преимуществу математическая и результаты могут быть представлены численно, то и метод в целом будем относить к категории количественных.

Шкалирование

Шкалирование в еще большей степени, чем таксономический анализ, совмещает в себе черты количественного и качественного изучения реальности. Количественный аспект шкалирования состоит в том, что в его процедуру в подавляющем большинстве случаев входят измерение и числовое представление данных. Качественный аспект шкалирования выражается в том, что, во-первых, оно позволяет манипулировать не только количественными данными, но и данными, не имеющими единиц измерения, а во-вторых, включает в себя элементы качественных методов (классификации, типологизации, систематизации).

В самом общем смысле шкалирование есть способ познания мира через моделирование реальности с помощью формальных (в первую очередь, числовых) систем. Наиболее строгим определением представляется следующее: шкалированиеэто процесс отображения по заданным правилам эмпирических множеств в формальные. Под эмпирическим множеством понимается любая совокупность реальных объектов (людей, животных, явлений, свойств, процессов, событий), находящихся в определенных отношениях друг с другом. Эти отношения могут быть представлены четырьмя типами (эмпирическими операциями): 1) равенство (равно – не равно); 2) ранговый порядок (больше – меньше); 3) равенство интервалов; 4) равенство отношений.

По природе эмпирического множества шкалирование делится на два вида: физическое и психологическое. В первом случае шкалированию подвергаются объективные (физические) характеристики объектов, во втором – субъективные (психологические).

Под формальным множеством понимается произвольная совокупность символов (знаков, чисел), связанных между собой определенными отношениями, которые соответственно эмпирическим отношениям описываются четырьмя видами формальных (математических) операций: 1) «равно – не равно» (= ≠); 2) «больше – меньше» (> <); 3) «сложение – вычитание» (+ -); 4) «умножение – деление» (х:).

При шкалировании обязательным условием является взаимооднозначное соответствие между элементами эмпирического и формального множеств. Это означает, что каждому элементу первого множества должен соответствовать только один элемент второго, и наоборот. При этом взаимооднозначное соответствие типов отношений между элементами обоих множеств (изоморфизм структур) не обязательно. В случае изоморфности этих структур производится так называемое прямое (субъективное) шкалирование, при отсутствии изоморфизма производится косвенное (объективное) шкалирование.

Итогом шкалирования является построение шкал (лат. scala – 'лестница'), т. е. некоторых знаковых (числовых) моделей исследуемой реальности, с помощью которых можно эту реальность измерить. Таким образом, шкалы являются измерительными инструментами.

Отношения между элементами эмпирического множества и соответствующие допустимые математические операции (допустимые преобразования) обусловливают уровень шкалирования и тип получаемой шкалы (по классификации С. Стивенса). Первому, наиболее простому типу отношений (= ≠) соответствуют наименее информативные шкалы наименований, второму (> <) – шкалы порядка, третьему (+ -) – шкалы интервалов, четвертому (х:) – самые информативные шкалы отношений.

Процесс психологического шкалирования условно можно разделить на два основных этапа: эмпирический, на котором производится сбор данных об эмпирическом множестве (в данном случае о множестве психологических характеристик исследуемых объектов или явлений), и этап формализации, т. е. математико-статистической обработки данных первого этапа. Особенности каждого из этапов определяют методические приемы конкретной реализации шкалирования. В зависимости от объектов исследования психологическое шкалирование выступает в двух разновидностях: психофизическое или психометрическое.

Психофизическое шкалирование заключается в построении шкал для измерения субъективных (психологических) характеристик объектов (явлений), имеющих физические корреляты с соответствующими физическими единицами измерения. Например, субъективным характеристикам звука (громкости, высоте, тембру) соответствуют физические параметры звуковых колебаний: амплитуда (в децибелах), частота (в герцах), спектр (в показателях составляющих тонов и огибающей). Таким образом, психофизическое шкалирование позволяет выявить зависимость между величинами физической стимуляции и психической реакции, а также выразить эту реакцию в объективных единицах измерения. В результате получают любые виды косвенных и прямых шкал всех уровней измерения: шкалы наименований, порядка, интервалов и отношений.

Психометрическое шкалирование заключается в построении шкал для измерения субъективных характеристик объектов (явлений), не имеющих физических коррелятов. Например, характеристик личности, популярности артистов, сплоченности коллективов, выразительности образов и т. п. Реализуется с помощью некоторых методов косвенного (объективного) шкалирования. В результате получают шкалы суждений, относящиеся по типологии допустимых преобразований, как правило, кшкалам порядка, реже – к шкалам интервалов. В последнем случае в качестве единиц измерения выступают показатели вариативности суждений (ответов, оценок) респондентов. Наиболее характерными и распространенными психометрическими шкалами являются шкалы оценок и основанные на них шкалы установок. Психометрическое шкалирование лежит в основе разработки большинства психологических тестов, а также методов измерений в социальной психологии (социометрические методики) и в прикладных психологических дисциплинах. Поскольку вынесение суждений, лежащее в основе процедуры психометрического шкалирования, может быть применено и к физической сенсорной стимуляции, постольку эти процедуры применимы и для выявления психофизических зависимостей, но в этом случае получаемые шкалы не будут иметь объективных единиц измерения.

Как физическое, так и психологическое шкалирование может быть одномерным и многомерным. Одномерное шкалирование – это процесс отображения эмпирического множества в формальное по одному критерию. Получаемые одномерные шкалы отображают либо отношения между одномерными эмпирическими объектами (или одними и теми же свойствами многомерных объектов), либо изменения одного свойства многомерного объекта. Реализуется одномерное шкалирование с помощью методов и прямого (субъективного), и косвенного (объективного) шкалирования.

Под многомерным шкалированием понимается процесс отображения эмпирического множества в формальное одновременно по нескольким критериям. Многомерные шкалы отражают либо отношения между многомерными объектами, либо одновременные изменения нескольких признаков одного объекта. Процесс многомерного шкалирования в отличие от одномерного характеризуется большей трудоемкостью второго этапа, т. е. формализации данных. В связи с этим привлекается мощный статистико-мате-матический аппарат, например, кластерный или факторный анализы, входящие неотъемлемой частью в методы многомерного шкалирования.

Раскроем упоминавшиеся ранее понятия «косвенное» и «прямое» шкалирования. Косвенное, или объективное шкалирование – это процесс отображения эмпирического множества в формальное при взаимном несоответствии (отсутствие изоморфизма) между структурами этих множеств. В психологии в основе такого несоответствия лежит первый постулат Фехнера о невозможности прямой субъективной оценки величины своих ощущений. Для количественного выражения ощущений используются внешние по отношению к ним (косвенные) единицы измерения, базирующиеся на различных оценках испытуемых: едва заметные различия, время реакции (ВР), дисперсия различения, разброс категориальных оценок.

Косвенные психологические шкалы по способам их построения, исходным допущениям и единицам измерения образуют несколько групп, главные из которых следующие: 1) шкалы накопления, или логарифмические шкалы; 2) шкалы, основанные на измерении ВР; 3) шкалы суждений (сравнительных и категориальных). Аналитическим выражениям этих шкал присвоен статус законов, названия которых связаны с именами их авторов: 1) логарифмический закон Вебера–Фехнера; 2) закон Пьерона (для простой сенсомоторной реакции); 3) закон сравнительных суждений Терстона и 4) закон категориальных суждений Торгерсона. Наибольшими прикладными возможностями обладают шкалы суждений. Они позволяют измерять любые психические явления, реализуют как психофизическое, так и психометрическое шкалирование, дают возможность многомерного шкалирования. По типологии допустимых преобразований косвенные шкалы представлены в основном шкалами порядка и интервалов.

Прямое, или субъективное, шкалирование представляет собой процесс отображения эмпирического множества в формальное при взаимооднозначном соответствии (изоморфизм) структур этих множеств. В психологии в основе этого соответствия лежит допущение о возможности прямой субъективной оценки величины своих ощущений (отрицание первого постулата Фехнера). Реализуется субъективное шкалирование с помощью процедур, выясняющих, во сколько раз (или на сколько) ощущение, вызванное одним стимулом, больше или меньше ощущения, вызванного другим стимулом. Если такое сравнение производится для ощущений разных модальностей, то говорят о кросс-модальном субъективном шкалировании.

Прямые шкалы по способу их построения образуют две основные группы: 1) шкалы, основанные на определении сенсорных отношений; 2) шкалы, основанные на определении величин стимулов. Второй вариант открывает путь к многомерному шкалированию. Значительная часть прямых шкал хорошо аппроксимируется степенной функцией, что на большом эмпирическом материале доказал С. Стивене, именем которого названо аналитическое выражение прямых шкал – степенной закон Стивенса.

Для количественного выражения ощущений при субъективном шкалировании используются психологические единицы измерения, специализированные для конкретных модальностей и экспериментальных условий. Многие из этих единиц имеют общепринятые наименования: «соны» для громкости, «брилы» для яркости, «густы» для вкуса, «веги» для тяжести и т. д. По типологии допустимых преобразований прямые шкалы представлены главным образом шкалами интервалов и отношений.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)