|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Общее представление об обработкеСобрав совокупность данных, исследователь приступает к их обработке, получая сведения более высокого уровня, называемые результатами. Он уподобляется портному, который снял мерку (данные) и теперь все зафиксированные размеры соотносит между собой, приводит в целостную систему в виде выкройки и в конечном итоге – в виде той или иной одежды. Параметры фигуры заказчика – это данные, а готовое платье – это результат. На этом этапе могут обнаружиться ошибки в замерах, неясности в согласовании отдельных деталей одежды, что требует новых сведений, и клиент приглашается на примерку, где вносятся необходимые коррективы. Так и в научном исследовании: полученные на предыдущем этапе «сырые» данные путем их обработки приводят в определенную сбалансированную систему, которая становится базой для дальнейшего содержательного анализа, интерпретации и научных выводов и практических рекомендаций. Если по обработке данных выявляются какие-либо ошибки, пробелы, несоответствия, препятствующие построению такой системы, то их можно ликвидировать и восполнить, проведя повторные замеры. Обработка данных направлена на решение следующих задач: 1) упорядочивание исходного материала, преобразование множества данных в целостную систему сведений, на основе которой возможно дальнейшее описание и объяснение изучаемых объекта и предмета; 2) обнаружение и ликвидация ошибок, недочетов, пробелов в сведениях; 3) выявление скрытых от непосредственного восприятия тенденций, закономерностей и связей; 4) обнаружение новых фактов, которые не ожидались и не были замечены в ходе эмпирического процесса; 5) выяснение уровня достоверности, надежности и точности собранных данных и получение на их базе научно обоснованных результатов. Рассматриваемый этап обычно связывается с обработкой количественного характера. Качественная обработка – это способ предварительного проникновения в сущность объекта путем выявления его неизмеряемых свойств на базе количественных данных. Количественная обработка направлена в основном на формальное, внешнее изучение объекта, качественная – преимущественно, на содержательное, внутреннее его изучение. В количественном исследовании доминирует аналитическая составляющая познания, что отражено и в названиях количественных методов обработки эмпирического материала, включающих в себя категорию «анализ» корреляционный анализ, факторный анализ и т. д. Основным итогом количественной обработки является упорядоченная совокупность «внешних» показателей объекта (объектов). Реализуется количественная обработка с помощью математико-статистических методов. В качественной обработке доминирует синтетическая составляющая познания, причем в этом синтезе превалирует компонент, объединения и в меньшей степени присутствует компонент обобщения. Обобщение – прерогатива последующего этапа исследовательского процесса – интерпретационного. В фазе качественной обработки данных главное заключается не в раскрытии сущности изучаемого явления, а пока лишь в соответствующем представлении сведений о нем, обеспечивающем дальнейшее его теоретическое изучение. Обычно результатом качественной обработки является интегрированное представление о множестве свойств объекта или множестве объектов в форме классификаций и типологий. Качественная обработка в значительной мере апеллирует к методам логики. Качественная и количественная обработка составляют органичное целое. Количественный анализ без последующей качественной обработки бессмыслен, так как сам по себе он не в состоянии превратить эмпирические данные в систему знаний. А качественное изучение: объекта без базовых количественных данных – немыслимо. В научном познании. Без количественных данных качественное познание – это чисто умозрительная процедура, не свойственная современной науке. В философии категории «качество» и «количество», как известно, объединяются в категории «мера». Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |