АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Основы физиологии труда и комфортные условия жизнедеятельности

Читайте также:
  1. B) Характер труда
  2. D) минимальный размер оплата труда.
  3. I Распад аустенита в изотермических условиях
  4. I. Методические основы
  5. I. Основы применения программы Excel
  6. I. Основы экономики и организации торговли
  7. I. Отчисления в Государственный Фонд социальной защиты населения Минтруда и социальной защиты РБ (Фонд соц. защиты).
  8. I. Понятие и значение охраны труда
  9. I. При каких условиях эта психологическая информация может стать психодиагностической?
  10. I. Психологические условия эффективности боевой подготовки.
  11. II. Законодательство об охране труда
  12. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Любая человеческая деятельность наиболее успешна в комфортных условиях. Под комфортом вообще понимается совокупность удобств, благоустроенности и уюта, относящихся обычно к быту человека. Применительно к трудовой деятельности чаще используют понятие функционального комфорта, т.е. такого соответствия свойств и состояний человека содержанию и условиям деятельности, при кото­ром обеспечивается требуемое качество или производительность труда и минимизируются психофизиологические затраты. Научные ос­новы обеспечения комфортных условий и содержания деятельности разрабатываются физиологией и гигиеной труда.

1.1.1. Основы физиологии и гигиены труда. Физиология труда изучает особенности функционирования в процессе профессионального труда, что необходимо для оценки и нормирования рабочей нагруз­ки, рационализации режимов труда и отдыха (РТО) и т.д. Гигиена труда изучает влияние производственной среды на трудовые процес­сы в целях оздоровления труда и профилактики профзаболеваний.

С точки зрения физиологии труда, в основе любого вида деятель­ности лежит формирование функциональной системы, т.е. системы различно локализованных структур и процессов, организуемых цен­тральной нервной системой для получения результата, обеспечива­ющего достижение поставленной цели деятельности. Функциональные системы, складываясь в процессе обучения, тренировки и профес­сионального труда, являются физиологической основой трудовых навыков.

Оценка и нормирование рабочей нагрузки и условий труда (УТ) проводятся применительно к различным формам трудовой деятельнос­ти. Самые общие формы - физический и умственный труд в своей основе имеют четкое преобладание физического или умственного компонента работы. Более детальная классификация включает сле­дующие 5 форм [5]: 1) формы труда, требующие значительной мы­шечной активности и высоких (17...25 МДж или 4000...6000 и выше ккал в сутки) энергозатрат (ЭЗ); 2) групповые и конвейерные фор­мы труда с однообразными операциями в заданных темпе и ритме (монотонный труд); 3) механизированный труд с Э3 12.5...17 МДж или 3000...4000 ккал в сутки; 4) автоматизированный труд; 5) формы труда со значительными ограничениями двигательной ак­тивности (гипокинезией) и ЭЗ 10…11,7 МДж или 2000...2400 ккал в сутки.

Уровень физической нагрузки определяет тяжесть труда, нервно-психической - его напряженность. Особые формы нагрузок создаются воздействием вредных и опасных факторов на РМ (вредность и опас­ность труда). В сумме тяжесть, напряженность, вредность и опас­ность труда определяют психофизиологическую цену деятельности, затраты организма. Нормирование рабочей нагрузки заключается в установлении нормативов для факторов, отделяющих тяжесть, на­пряженность, вредность и опасность труда. СН 4088-86 и ГОСТ 12.1.005-88 выделяют следующие категорий тяжести труда по ЭЗ:

I - легкие физические работы, выполняемые сидя и не требую­щие напряжения с ЭЭ до 139 Вт или 125 ккал/ч (категория Iа) и легкие физические работы с некоторым физическим напряжением при ЭЗ 140.. 174 Вт или 125...150 ккал/ч (категория Iб);

II - физические работы средней тяжести с ЭЗ 175...290 Вт (150...250 ккал/ч), которые подразделяются на IIа (175...232 Вт-работы связанные с ходьбой, перемещением изделийвесом до 1 кг или предметов в положении стоя или сидя и требующие определенного физического напряжения) и II6 (233...290 Вт - работы, выполняе­мые стоя, связанные с ходьбой, переноской тяжестей до 10 кг и сопровождаемые умеренным физическим напряжением);

III - тяжелые физические работы с ЭЗ более 290 Вт (свыше 250 ккал/ч) в процессе систематического физического напряжения - при постоянных передвижениях и переноске тяжестей более 10 кг.

Тяжесть труда также оценивается по объему выполняемой физи­ческой работы, весу перемещаемых грузов, физиологическим - пока­зателям. Так, уровень физического труда оценивают величиной удер­живаемого груза, динамической нагрузкой, максимальной разовой массой переносимых за смену грузов, величиной сменного грузообо­рота и т.д.

По особенностям работы опорно-двигательного аппарата выделяют статическую (удержание орудий и предметов труда) и динамическую (перемещение груза) работы. Различаются общая мышечная работа, выполняемая более чем 2/3 мышц; региональная - с участием 1/3...2/3 мышц и локальная - с участием менее 1/3 мышц.

Физиологическими методами оценки тяжести труда помимо прямо­го определения уровня обмена в специальных камерах (прямой кало­риметрии) являются измерение потребления О2 в процессе труда, расчет энергетического обмена по полному пищевому балансу и т.д.

ЭЗ в процессе труда зависят не только от уровня рабочей фи­зической нагрузки, но и от особенностей рабочей позы, возраста работника, воздействия неблагоприятных температурных условий и т.д.

Напряженность труда оценивается по величине нервно-психической нагрузки (числу объектов наблюдения, темпу и частоте движе­ний и т.д.) и по реакциям организма на нагрузку (например, по частоте пульса и его вариативности). По мнению специалистов США, последний показатель является наиболее достоверной мерой нервно-психической нагрузки и умственных усилий,

Количественная оценка тяжести и напряженности труда применя­ется при установлении доплат при работе в условиях, не отвечаю­щих нормативным (типовое положение № 337/22-78 от З.10.86г.). Она проводится в соответствии с классификацией, утвержденной Минздравом 12.08.86г. за № 4137-86, в которой УТ делятся на три класса: 1-й - оптимальные (односменная работа в оптимальном мик­роклимате и при отсутствии опасных и вредных факторов); 2-й - допустимые (при допустимых значениях параметров микроклимата и концентрациях вредных факторов ниже ПДК и ПДУ); 3-й - вредные и опасные (при превышении ПДУ и ПДК вредных факторов и физических перегрузках). Оценка проводится в баллах. При тяжелых и вредных УТ (2...6 баллов) доплаты составляют 4...12 %, при особо тяжелых и вредных УТ (6,1..10 и более баллов) доплаты увеличиваются до 13...24 %.

В 1994г. Госкомсанэпиднадзором РФ введены "Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса" (руководство Р 2.2.013-94). В нем помимо оптимальных, допустимых и вредных УТ введен класс опасных (экстремальных) УТ, расширен и уточнен перечень негативных факторов, по которым проводится оценка, а в классе вредных УТ выделено 4 степени. Для первой из них характерны обратимые отклонения от нормативов, тем не менее приводящие к риску развития заболевания; при второй степени отклонения от нормативов приводят к на­чальным признакам профзаболеваний и повышают общую заболевае­мость, при третьей - вызывают легкие формы профзаболеваний, а при четвертой - тяжелые формы. Опасными или экстремальными считаются такие концентрации или уровни вредных факторов, которые создают угрозу жизни или высокий риск тяжелых форм заболеваний.

Оптимальные нормативы установлены только для параметров мик­роклимата, а для вредных факторов условно за оптимальные прини­маются значения, безопасные для населения (обычно в несколько раз меньшие, чем ПДК и ПДУ рабочей зоны).

Физиологией труда разработаны рекомендаций по оптимизации рабочих движений (замене статических усилий на менее тягостные динамические), выбору наименее утомляющих движений в оптимальном рабочем пространстве (для рук - в дугах 34...40 см от предплечей), оптимальных усилий (для двух рук при движениях к себе - не более 54 кг, для одной руки - не более 20 кг, при движении от себя соответственно 72 и 59 кг) и т.д. Направления движений должны совпадать с движениями объекта управления (включение скорости - от себя, а торможение - к себе).

В производственном обучении должны учитываться физиологичес­кие механизмы формирования двигательных навыков. Навыком назы­вается доведенное до автоматизма в результате упражнений умение совершать целенаправленные действия. Процесс выработки сложных двигательных навыков, как показано Н.А. Бернштейном, происходит быстрым, "постигающим скачком" (например, при обучении плаванью или езде на велосипеде).

1.1.2. Микроклимат помещений и его гигиеническое нормирование. Под микроклиматом помещений понимают создаваемые в них метеоро­логические условия, к которым относятся температура (t, °С) и скорость движения воздуха (V, м/с), его влагосодержание (φ, %), тепловое излучение и уровень барометрического давления (Рб). При этом t и V влияют на конвекционный перенос тепла (Qконв), φ и V определяют теплоотдачу испарений (Qисп), от теплового излучения зависят теплоперенос радиацией (Qрад). Уровень Рб сущес­твенно влияет на конвекционной теплоперенос и перенос тепла про­ведением - кондукцией (Qконд), что необходимо учитывать при обеспечении работ в условиях повышенного (кессоны) или понижен­ного (высокогорье) давления. Важное значение для теплообмена ор­ганизма имеет уровень его энергетического обмена (Qмет), который резко возрастает при увеличения физического компонента деятель­ности, а также теплоизоляционная способность одежды и время воз­действия.

Общее воздействие микроклимата на тепловое состояние может быть выражено уравнением теплового баланса: Qмет ± Qконд ± Qрад ± Qконв – Qисп = 0. При нулевом значении баланса обеспечи­вается постоянство t тела, при плюсовом - развивается перегре­вание организма, при отрицательном - его охлаждение. При пере­гревании основным путем теплоотдачи становится испарение, кото­рое в комфортных условиях равно 40 г/ч. При высокой t и интен­сивной физической работе испарение может достигать 12 л за сме­ну. Допустимые влагопотери испарением при 7...8-часовой смене составляют 250 г/ч, а 1...2-часовой - 800 г/ч.

Теплообмен организма в оптимальных или комфортных условиях только на 25 % обеспечивается испарением, а резкое увеличение ис­парения свидетельствует о напряжении системы терморегуляции. При низких t повышается теплопродукция за счет непроизвольного сокращения мышц (дрожь), высокая t резко снижает физическую рабо­тоспособность и ускоряет развитие утомления (при t +40 °С утомление операторов ТС наступает в 2 раза быстрее, чем в ком­фортных условиях). Снижение t воздуха до + 10°С нарушает коор­динацию пальцев кисти, что отрицательно сказывается на качестве работы операторов ТС.

Экстремальные t при продолжительном воздействий вызывают простудные заболевания, увеличивают трудопотери, приводят к отморожениям, тепловому и солнечному ударам (в первом случае вслед­ствие перегрева всего организма, во втором - перегрева головного мозга). Указанные поражения, случившиеся на работе, расследуются и учитываются как несчастные случаи; видом происшествия, приведшим к ним, указывается воздействие экстремальных t.

Организм человека может адаптироваться (приспособлять свое строение и функции) к определенным климатическим условиям. Адап­тированность, как правило, закрепляется генетически. При времен­ном негенетическом приспособлении говорят об акклиматизации, которая занимает около 4...6 месяцев и заключается в определенной перестройке энергетического обмена и системы терморегуляции.

Нормирование параметров микроклимата проводят или по комплек­сным показателям, учитывающим одновременное воздействие двух и более факторов, или раздельно по каждому фактору. В нормативных документах РФ принято нормирование раздельно по каждому фактору (ГОСТ 12.1.005-88 и СН 4088-86) - по t, φ и V. Указанными до­кументами предусмотрено применение оптимальных и допустимых норм, т.е. соответственно значения показателей микроклимата, не вызывающих напряжения механизмов терморегуляций и вызывающих эти напряжения, но не выходящие за пределы физиологических приспособительных возможностей. В них учитываются сезонные изменения энергетического обмена (Qмет) и характера одежды (приводятся нормы для теплого и холодного периодов года со среднесуточными t наружного воздуха соответственно выше и ниже +10˚С), а также категории тяжести работ (см. п.п. 1.1.1). Так, значения оптимальной t в холодный период при увеличении тяжести работы с Iа до III снижаются от 22 … 24 до 16 … 18˚С, а в теплый период – с 23 …25 до 18 … 20˚С. Допустимые t устанавливаются раздельно для постоянных и непостоянных РМ (на последних работающий находится менее 50% или 2 ч непрерывно). При этом диапазон допустимых t на постоянных РМ соответственно изменяется с 25…21 до 19…13˚С и с 28…22 до 26…15˚С (на непостоянных РМ эти значения на 2…3˚С меньше). Оптимальная φ во всех условиях должна быть 40…60%, а допустимая φ – в холодный период 75%, в теплый – 55…75%. Оптимальная V равна 0,1…0,4 м/с, а допустимая – 0,1…0,6 м/с.

Радиационная t учитывается введением специальных норм для помещений с избытками явного тепла. Нормами установлены и до­пустимые перепады t воздуха по горизонтали и вертикала.

Комплексные показатели микроклимата используют в РФ только в гигиенической классификации УТ по вредным и опасным факторам, которая применяется для установления доплат за указанные усло­вия. Кроме того, в Руководстве Р 2.2.013-94 микроклиматические условия оцениваются по WBGT -индексу, который рассчитывается по показателям сухого, влажного и радиационного (шарового) тер­мометров. На Западе большое распространение получили шкалы ком­фортных условий, например, стандарт по комфорту Американского общества инженеров-специалистов по нагреву, охлаждению и конди­ционированию воздуха ( АSHRAE ). Внем зона комфорта для зимних и летних условий определяется с учетом всех 4 микроклиматических факторов, теплоиэоляционной способности одежды и уровня энерге­тического обмена. Зоны комфорта устанавливаются при их приемле­мости для 94% людей.

Уровень Рб влияет не только на тепловое состояние организма. Уменьшение давления, при подъеме на высоту, снижает парциальное давление кислорода Ро2 (на высоте 2000...3000 м Ро2 снижается со 120 до 70 мм рт.ст., что вызывает усиление деятельности сер­дечно-сосудистой и дыхательной систем). При падении Ро2 до 60 мм рт.ст. (высота 4000 м) сердце и легкие уже не обеспечивают требуемого поступления О2. Наступает кислородное голодание - гипоксия (при этом наблюдается падение работоспособности, головная боль и т.д.). Еще опаснее очень быстрое - в течение до­лей секунды - снижение давления при разгерметизации кабин или скафандров, как это было с советскими космонавтами в 1971г. Вэтом случае наступает практически мгновенное выделение раство­ренных в жидкостях организма газов, в крови образуются газовые пузырьки, перекрывающие мелкие сосуды (газовая эмболия). Такое же явление может развиваться и в случае декомпрессии при работах под повышенным давлением (например, в кессонах). Декомпрессионная (или кессонная) болезнь способна привести к гибели человека. Работы под повышенные давлением связаны с еще одной опасностью: 02 при высоких давлениях становится токсическим веществом, а азот - "веселящим" газом. Поэтому для профилактики отравлений и травм работы под высоким давлением требуют использоватья специ­альных дыхательных смесей.

1.1.3. Основы эргономики и инкженерной психологии. Главным компонентом трудовой деятельности все чаще становится умственный труд, соответственно возрастает значение психологических факто­ров человека. Оптимизацией труда на основе учета, прежде всего, психологических свойств человека (а также физиологических и антропометрических) занимается эргономика. Информационное взаимодействие человека и машины является объектом исследования инже­нерной психологии. Основные цели этих наук заключаются в даль­нейшей гуманизации трудовой деятельности, рациональной органи­зации конструкций РМ и всех его компонентов - органов управления (ОУ), средств отображения информации (СОИ) и рабочего кресла, создании научно обоснованных РТО, разработке и внедрению профессионального психофизиологического отбора и т.д.

Гуманизация современных видов труда требует повышения его со­держательности, предупреждения развития отрицательных психологических состояний в процессе деятельности, обеспечения всестороннего развития личности. Эффективное современное производство не­возможно без высокой специализации, постоянного углубляющегося разделения труда. Однако эти процессы ведут к однообразию рабо­чих операций и возрастающей монотонности трудовых процессов. Пе­реход к полной автоматизации снижает содержательность деятель­ности, вызывает отчуждение работников и является одной из причин психического пресыщения. Информационные перегрузки, характерные для сложных ТС, дефицит времени и высокая ответственность за принимаемые решения приводят к развитию состояния психоэмоцио­нальной напряженности и психологического стресса, снижающего работоспособность и приводящего в конечном счете к росту сердеч­но-сосудистых заболеваний.

Состояние монотонии проявляется в пониженной психической ак­тивности при частом повторении элементарных операций или при резком ограничении внешних раздражителей и низких уровнях рабо­чей нагрузки. При монотонии через 30...60 мин снижается качест­во работы, появляются жалобы на усталость и сонливость. Для борьбы с ней применяют чередование рабочих операций, изменение ритма работы, динамический микроклимат и т.д.

При психическом пресыщении идет активное преднамеренное от­рицание определенной деятельности, тенденция к перемене места работы с жалобами на отсутствие перспектив, плохое здоровье и т.д. Причиной пресыщения являются глубокие нарушения мотивации, ощущение своей ненужности на работе. Развитию такого состояния во многом способствовала полная автоматизация производственного процесса. Нашими психологами был выдвинут принцип активного опе­ратора, предусматривается повышение содержательности труда, соз­дание определенного уровня рабочей нагрузки и повышение мотива­ции.

Особое значение из психических состояний, связанных с трудо­вой деятельностью, имеет стресс (напряжение). Он был предложен для обозначения трехэтапной (тревога-адаптация-истощение) неспецифической реакции организма на повреждение, постепенно стрес­сом стали называть и нервно-психическое напряжение (психологический стресс). Повышенное напряжение вначале может даже улуч­шить некоторые функции (например, величину мышечных усилий), но сразу же ухудшает сложные интеллектуальные действия, вызывает чувство растерянности и невозможность сосредоточиться, мышечную скованность и непроизвольное напряжение мышц. Увеличиваются ошибки, появляются неадекватные реакции и может наступить срыв деятельности.

Даже менее выраженные формы стресса, что бывает гораздо чаще, приводят к глубоким нарушениям в здоровье и психологическом ста­тусе. Способствуют развитию стресса также индивидуальные качества (тревожность, эмоциональная неустойчивость), социально-психологические конфликты и т.д. Для профилактики стресса необходимо оптимизировать рабочую нагрузку, рационально организовать труд, обеспечить хороший социально-психологический климат на работе и т.д.

Ограничение двигательной активности снижает работоспособность, ухудшает качество деятельности, приводит к увеличению веса и т.д. Эффективным средством борьбы с гипокинезией являются производ-ственная гимнастика, занятия спортом и т.д.

1.1.4. Рациональная организация РМ оператора ТС. При органиэации РМ главным требованием является обеспечение соответствия СОИ и ОУ психофизиологическим возможностям человека-оператора ТС. В ГОСТах 12.2.032-78, 12.2.033-78 и 22269-76 приведены общие эргономические требования к организации РМ сидя и стоя и взаимному расположению их элементов. Схема рационального разме­щения ОУ по этим частям в горизонтальной плоскости представлена на рис. 1.

В вертикальной плоскости зона досягаемости представляет собой полуокружность с радиусом 550 мм и центром в плечевом суставе.

Оптимальной зоной наблюдения является сектор под углом ±15° от нормальной линии взгляда в вертикальной плоскости и горизон­тальной плоскости под углом ± 15° от сагиттальной плоскости (направление нос-затылок). Для часто используемых, но менее важ­ных СОИ рекомендован сектор под углом ±30°, а для редко исполь­зуемых СОИ - ±60° при высоте 1320…1410 мм. Взаимная компонов­ка СОИ и ОУ проводится с учетом упорядоченности рабочего поля, т.е. размещения элементов с учетом их важности, частоты

Риc.1. Зоны для выполнения ручных операций и ОУ:

1 - зона для размещения наиболее важных и часто используемых ОУ (оптимальная зона моторного поля);

2 - зона для часто используемых ОУ (зона легкой досягае­мости);

3 - зона для редко используемых ОУ (зона досягаемости)

и последовательности использования. Рекомендуемая высота рабо­чих поверхностей для работы в зависимости от требований к их точности лежит в диапазоне от 655 (при печатании на машинке) до 975 мм (при очень тонких работах).

Кресло оператора должно обеспечивать удобную дозу для работы и отдыха и надежную опору (не менее 5 опор) при выполнении пред­писанных действий. Поэтому оно должно иметь плавную регулировку высоты, перемещение сидения кресла по отношению к его основанию вперед-назад на 180...200 мм и поворот вокруг оси не менее, чем на 90° от исходного положения.

Объемно-пространственная организация функциональных помещений определяется требованиями СНиПов 2.09.02-85 (производственные здания), 2.09.04-87 (административные и бытовые здания), 2.08.02-85 (общественные здания) и 2.08.01-91 (жилые здания);

по цветосветовому климату - СН 181-70 (цветовая отделка интерье­ров зданий) и СНиП II-4-79 и его пособия (освещение). СН 245-71 установлена минимальная площадь на 1 работника 4,5 м2, а минимальный объем - 15 м3. Для отдельных категорий работников пло­щадь и объем увеличены СНиПами: для конструкторов - 20 м2, для РМ с ПЭВМ - 6 м2 и т.д. При создании цветового климата в поме­щениях необходимо учитывать эмоционально-физиологичеокие воз­действия цвета, света и их роль в организации пространства. Об освещении см. ниже п.п. 1.2.3.

Немаловажное значение имеет рациональная организация РТО опе­раторов ТС. Под РТО понимается временная регламентация продолжи­тельности работы и внутри сменных и межсменных перерывов. В РФ продолжительность работы в неделю установлена 40 ч для взрос­лых работников; 36 ч - для рабочих 16…18 лет и 24 ч - для ра­ботников 15...16 лет; при вредных УТ - не более 36 ч в неделю. Начало и продолжительность перерывов устанавливают с учетом ди­намики работоспособности, под которой понимаются закономерности изменения качества деятельности, и функционального состояния ра­ботника в процессе непрерывной работы. Вначале в течение 0,25...1 ч идет врабатываемость, приспособление функций организма к тем требованиям, которые определяются содержанием и условиями рабо­ты. Затем в течение 2...4 ч следует фаза устойчивой работоспо­собности, в которой достигается наивысшая производительность труда при наименьших усилиях. По мере истощения резервов орга­низма развивается утомление, т.е. временное снижение работоспо­собности вследствие интенсивности, длительности в неблагоприят­ных УТ. При утомлении снижается производительность труда, увели­чивается производственный травматизм, ухудшается самочувствие, появляется ощущение усталости, для профилактики утомления необхо­дим рациональный уровень рабочей нагрузки (обычно около 30% от максимальных возможностей человека), правильно выбранные переры­вы, функциональная музыка, пребывание в кабинетах психофизиоло­гической разгрузки. После обеденного перерыва (его продолжитель­ность должна быть в пределах 0,5...2 ч) изменения работоспособ­ности носят тот же характер, но реализуются на более низком уров­не.

Работоспособность меняется и в зависимости от времени суток. Она максимальна в утренние часы и существенно снижается ночью в период от 2 до 4 ч. Поэтому ночная работа требует больших уси­лий чем днем, а сама ночная смена должна быть на 1 ч короче

дневной. Около 20% всех работников не способны адаптироваться к ночной работе, поэтому целесообразен их отбор по данному па­раметру.

При установлении перерывов должно учитываться, что для вос­становления функций при отдыхе требуется не менее 10 мин. При тяжелых УТ вводятся дополнительные перерывы. Так, при вибрации выше ПДУ на 1…12 дБ в течение смены должно быть не менее 2 перерывов общей продолжительностью 50 минут.

Профессиональный психологический отбор операторов ТС рассмот­рен ниже в разделе 4.

1.2. Обеспечение комфортных условий жизнедеятельности. [2]

В процессе жизнедеятельности человек находится в жилых, об­щественных, административно-бытовых и производственных помещени­ях. В них следует поддерживать требуемое качество воздуха, т.е. оптимальные (в крайнем случае допустимые) параметры микроклима­та, постоянство газового состава и отсутствие (в крайнем случае не выше ПДК) вредных примесей в воздухе. Для этого необходимо подавать в эти помещения определенное количество чистого наруж­ного воздуха.

1.2.1. Потребности в чистом наружном воздухе для помещений регламентируются СНиП 2. 04.05-91, в частности, обязательными при­ложениями 17 и 19. Минимальный расход наружного воздуха для по­мещений: 1) жилых - 3 м3/ч на 1 м2 помещения при естественном их проветривании; 2) общественных и админстративно-бытовых - 60 или 20 м3/ч на 1 чел. при отсутствии естественного проветривания (последняя цифра установлена для зрительных залов, залов совеща­ний и других помещений, в которых люди находятся до 3 ч непре­рывно), и при естественном проветривании - расход установлен СНиП 2.08.02-89 и СНиП 2.09.04-87; 3) производственных - 30 или 20 м3/ч при объеме помещения (участка, зоны) на 1 чел. менее 20 или 20 м3 и более при естественном проветривании, а при отсутствии последнего - 60 или 60...120 м3/ч на 1 чел. соответственно без и с рециркуляцией при кратности К≥10 обменов/ч или с пос­ледней при К<10 обменов/ч. При этом расход наружного воздуха в этих помещениях определяют по расходу воздуха, удаляемого нару­жу системами вытяжной вентиляции и технологическим оборудовани­ем, с учетом нормируемого дисбаланса не менее 20...10% общего воздухообмена при наличия приточной системы с рециркуляцией при К<10 обменов/ч. Дисбаланс общего воздухообмена не устанавлива­ется в других случаях.

В производственных помещениях расход приточного воздуха (на­ружного или смеси наружного и рециркуляционного) определяют рас­четом по формулам приложения 17 СНиП 2.04.05-91. При этой прини­мают наибольший из расходов, требуемых для обеспечения: 1) санитарно-гигиенических норм; 2) норм взрывопожарной безопасности. В первом случае расход воздуха рассчитывают по избыткам явной и полной теплоты, массе каждого в отдельности из выделяющихся вредных или взрывоопасных веществ, избыткам влаги (водяного пара) и нор­мируемой К воздухообмена или нормируемому удельному расходу нор­мами отдельно для теплого и холодного периодов года и переход­ных условий; во втором случае - по массе выделяющихся газо-, паро- и пылевоздушным смесям (каждой в отдельности). Детально с методикой расчета приточного воздуха студент может ознако­миться в практикуме [6].

1.2.2. Системы обеспечения параметров микроклимата и состава воздуха. К этим системам относятся отопление, вентиляция и кон­диционирование, которые являются важнейшей частью инженерного оборудования здания или сооружения.

Отопление - это система поддержания в закрытых помещениях нормируемой t воздуха не ниже установленной ГОСТ 12.1.005-88 и СНиП 2.04.05-91. Основной принцип ее действия - компенсация тепловых потерь помещения за счет теплоотдачи греющих элементов системы отопления с учетом поступлений тепла от технологическо­го оборудования, коммуникаций, нагретых материалов, искусствен­ного освещения и других источников.

Любая система отопления, как правило, состоит из трех элемен­тов: генератора тепла, трубопроводов и отопительных приборов. Отопительные системы могут быть местными и центральным. При местном отоплении энергия (газ, электричество и т.д.) доставля­ются в помещение и преобразуются там в тепло в различного рода нагревателях, печах, газовых конвекторах и т.п. При центральном отоплении тепло получают за пределами обслуживаемого здания, откуда оно через трубопроводную сеть поступает к отопительным приборам в помещениях. Они могут быть водяными, паровыми, воздушными и панельно-лучистыми. Роль теплоносителя могут выполнять вода (чаще всего), пар и воздух. Отопительными приборами являют­ся конвекторы (при воздушном отоплении), радиаторы и панели (при других видах отопления).

Выбор систем отопления (в том числе отопительных приборов, теплоносителя, предельной его t или теплоотдающие поверхности) осуществляется по приложению 11 СНиП 2.04.05-91 в зависимости от назначения помещения, а в производственных помещениях - и с уче­том категории их по взрывопожароопасности, наличия/отсутствия пыли, аэрозолей, влаговыделений или возгоняемых ядовитых веществ в них. Печное отопление допускается только в зданиях, указанных в приложении 15 данного СниПа. Однако отраслевые нормы и правила иногда уточняют применение тех или иных систем отопления. Например, СН 512-78 и правила [7] предусматривают в помещениях ВЦ (т.е. с электронно-вычислительной техникой или ЭВТ) центральное водяное отопление в сочетании с приточной вентиляцией или КВ при одно- и двухсменном режимах работы, а при трехсменном - только воздушное отопление,

В помещениях категорий А, Б и В СНиП 2.04.05-91 рекомендует применять отопительные приборы с гладкой поверхностью, допуска­ющей легкую очистку (например, радиаторы секционные или панель­ные одинарные, спаренные; приборы из гладких стальных труб). Ребристые трубы в таких помещениях накаливают осевшую пыль, ко­торая пригорает, и появляется неприятный запах.

Вентиляция - это организованный и регулируемый воздухообмен в помещениях, в процессе которого загрязненный или нагретый воздух удаляется и на его место подается свежий чистый воздух. Ее задачей является поддержание химического состава и физического состояния воздуха, удовлетворяющих гигиеническим требова­ниям. В зависимости от характера движущих сил вентиляцию делят на естественную, искусственную и смешанную. При естественной вентиляции воздух перемещается под влиянием температурного пе­репада или действия ветра. При искусственной (чаще называют механической) вентиляции воздух перемещается механическим побуди­телем (вентилятором или эжектором). При смешанной вентиляции используются как естественные силы, так и механические побуди­тели для перемещения воздуха.

По принципу действия различают вытяжную, приточную и приточно-вытяжную вентиляции. Последняя наиболее полно обеспечивает санитарно-гигиенический эффект. Вентиляция может быть местной (проветривание отдельных РМ или зон) и общеобменной (проветрива-ние всего помещения). Существует сочетание их, называемое комби­нированной вентиляцией. Здесь одновременно с общим воздухообме­ном локализуют и отдельные наиболее интенсивные источники выде­лений. По способу организации воздухообмена различают вентиляцию с уравновешенным (приток равен вытяжке), положительным (превыша­ет приток над вытяжкой) и отрицательным (превышает вытяжка над притоком) воздушным балансом. Характер такого баланса имеет важ­ное гигиеническое значение. Кроме того, вентиляция может быть рабочей и аварийной. Последняя предназначена для быстрого удаления вредных и опасных веществ, проникающих в помещение при производственных неполадках и авариях.

Для экономии тепла на нагрев наружного воздуха в системе приточно-вытяжной вентиляции предусматривают частичный (до 90%) возврат удаляемого воздуха, т.е. рециркуляцию.

Успешная работа вентсистем во многом зависит от правильного их выбора и строгого выполнения на стадиях проектирования, мон­тажа и эксплуатации технических и санитарно-гигиенических тре­бований, установленных СНиП 2.04.05-91, ГОСТ 12.4.021-75 и другими нормативно-техническими документами (НТД). Выбор вентсистем зависит от технологии, оборудования, его расположения и свойств выделяющихся веществ, а также от климатических условий района, где находится здание. Общие требования к вентсистемам (по СНиП 2.04.05-91): 1) подача свежего воздуха должна ид­ти в самый чистый участок помещения, а удаление - из самого грязного; 2) в производственных помещениях вначале следует вы­бирать: а) аэрацию, а затем механическую вентиляцию; б) местную вытяжную вентиляцию, а затем общеобменную; 3) средства вентиля­ции не должны создавать значительного шума и перепадов давления в помещениях, быть взрывобезопасными и защищенными от коррозии; 4) содержание пыли в подаваемом механической вентиляцией воздухе не должно превышать: а) ПДК в атмосферном воздухе населенных пунктов - при подаче его в помещения жилых и общественных зда­ний; б) 30% ПДК в воздухе РМ и зон - при подаче в помещения про­изводственных и административно-бытовых зданий; в) 30% ПДК в воздухе рабочей зоны с частицами пыли размером не более 10 мкм - при подаче его в кабины крановщиков, пульты управления, зоны дыхания работающих, а также при воздушном душировании; 5) мини­мально расход наружного воздухе на 1 чел. должен соответство­вать приложению 19 данного СНиПа (см. выше пп.1.2.1).

Аэрация - это организованный естественный воздухообмен, осу­ществляемый в заранее рассчитанных объемах и регулируемый в за­висимости от внешних и внутренних метеоусловий. Для управления аэрацией в местах притока воздуха (в окнах) предусматривают фра­муги, створки или форточки, а для вытяжки воздуха - вытяжные шахты с дефлекторами и регулируемыми клапанами на решетках или вентиляционные фонари в здании. При этом высота приточных прое­мов должна находиться летом на высоте 1...1,5 м от пола, а зи­мой - 4...6 м.

Расчет аэрации производят в два этапа: 1) определяют потреб­ное количество воздуха для помещения по формулам приложения 17 СНиП 2.04.05-91; 2) находят площади приточных и вытяжных от­верстий, исходя из полных напоров и количества воздуха, прохо­дящего через соответствующие отверстия.

Механическая вентиляция в производственных и других помеще­ниях чаще реализуется о помощью вентиляторов. Ее элементами являются вентилятор, магистральные, приточные и вытяжные возду­ховоды, воздухозаборное устройство и устройство выброса исполь­зованного воздуха, а также устройства по нагреванию и очистке воздуха.

По развиваемому давлению различают вентиляторы низкого (до 1 кПа), среднего (до 3 кПа) и высокого (до 12 кПа) давления. В вентсистемах применяются вентиляторы низкого и среднего давле­ния, а в установках пневмотранспорта, для дутья и других техно­логических нужд - вентиляторы высокого давления.

По своей конструкция вентиляторы подразделяют на центробежные и осевые. Их размер определяется номером вен­тилятора (от №1 до № 20), который представляет собой диаметр его колеса, выраженный в сотнях миллиметров (например, № 3 - 300 мм, № 20 - 2000 мм). Осевые вентиляторы развивают небольшое давление (до 0,35 кПа), так как с повышением последнего резко увеличивается шум вентилятора. Их применяют при отсутствии воз­духоводов (например, в окне, стене) или когда их длина незначи­тельна.

Тип и размеры вентилятора выбирают в зависимости от необхо­димой подачи, давления и условий среды, а также состава переме­щаемого воздуха. Во взрывоопасных помещениях надлежит применять эжекторы или взрывобезопасные вентиляторы, лопасти и внутренняя поверхность которых выполнена из меди, алюминия а других метал­лов, не дающих искры при ударах. КПД центробежного вентилятора равен 0,5...0,6, осевого - 0,5...0,7, а эжектора - до 0,25.

Расчет механической вентиляции проводят в три этапа: 1) опре­деляют потребное количество приточного воздуха для обеспечения требуемой воздушной среды в помещениях (Lп, м3/ч) по формулам приложения 17 СНиП 2.04.05-91; 2) находят потребный напор (Нп, Па) вентилятора для перемещения по вентсети Lп; 3) выбирают по каталогу вентилятор, обеспечивающий Lп и Нп, и определяют (при необходимости) установочную мощность, кВт, электродвигателя Ny=1,1LbHbbηп , где Lb и Hb - принятые соответствен­но производительность, м3/ч, и напор, Па, вентилятора; ηb и ηп -кпд соответственно вентилятора (по графику) и передачи (непос­редственная - 1,0; соединение муфтой - 0,98; клиноременная - 0,95 и плоскоременная - 0,90). По значению Ny подбирают по ка­талогу соответствующий тип электродвигателя, его мощность и т.д. Затем решают вопросы размещения вентсистемы в помещении и режи­ма ее работы (детально см. практикум [6]).

Кондиционирование воздуха (КВ) - это автоматическое поддержа­ние в закрытых помещениях (кабинах) всех или отдельных парамет­ров воздуха (t, V, φ и чистоты воздуха) с целью обеспечения оптимальных микроклиматических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса и обес­печения сохранности ценностей культуры. Для этого применяют спе­циальные агрегаты - кондиционеры. Они обеспечивают прием наруж­ного и рециркуляционного воздуха, его фильтрацию, охлаждение, подогрев, осушку, увлажнение, перемещение и другие процессы. Ра­бота кондиционера, как правило, автоматизирована.

По способу приготовления и раздачи воздуха кондиционеры под­разделяются на центральные и местные. Первые располагают вне обслуживаемых помещений и раздачу воздуха (от 30 до 250 тыс. м3/ч) осуществляют по системе воздуховодов; вторые - в обслуживаемых помещениях и раздача воздуха (не более 22,4 тыс. м3/ ч) осуществляют сосредоточенно, без воздуховодов.

По холодоснабжению кондиционеры подразделяет на автономные инеавтономные. В первых холод вырабатывается встроенным холодоагрегатом, а в неавтономных - снабжается централизованно. Цен­тральные кондиционеры являются неавтономными (секционного или блочно-секционного типа), а местные - автономными (в виде одно­го шкафа).

Существует два способа КВ - раздельный и совмещенный. При первом способе подготовку и подачу воздуха от кондиционера осу­ществляют раздельно в оборудование и в помещение с разными па­раметрами воздуха, а при втором способе - то же, но с одинаковыми параметрами воздуха.

Согласно СНиП 2.04.05-91 КВ следует принимать: первого класса - для обеспечения метеоусловий, требующих для технологичес­кого процесса, при экономическом обосновании или в соответствии с требованиями НТД; второго класса - для обеспечения метеоусловий в пределах оптимальных норм или требуемых для технологических процессов; третьего класса - для обеспечения метеоусловий в пределах допустимых норм, если они не обеспечиваются вентиляци­ей в теплый период года без применения искусственного охлаждения воздуха или оптимальных норм - при экономическом обосновании.

Расчет систем КВ достаточно сложен (особенно центральных) и состоит из четырех этапов [8]: 1) выбор расчетных параметров наружного (см. параметры А или Б приложения 8 СНиП 2.04.05-91, руководствуясь пп.2.14...2.16 данного СНиП) и внутреннего (см. приложения 1, 2 и 5 этого СНиП или отраслевые НТД) воздуха для всех периодов года, а также определение вида и количества вред­ных выделений, избытков тепла в обслуживаемых помещениях; 2) на~ хождение потребного количества приточного воздуха (Lп, м3 /ч) по формулам приложения № 17 СНиП 2.04.05-91 и определение полной производительности кондиционера, м3 /ч, Lk=KпLп, где Kп -коэффициент потерь воздуха, принимаемый в зависимости от класса воздуховода по табл. 1 данного СНиП; 3) выбор необходимой схемы воздухообмена в обслуживаемом помещении с учетом специфики рабо­ты оборудования, технологии и определение типа системы КВ, а также детальное описание ее работы; 4) расчет процессов обработ­ки воздуха в кондиционере(ах) при различных периодах года в зависимости от принятой схемы воздухообмена, а также расчет и вы­бор различных элементов центрального кондиционера. Подбор мест­ных кондиционеров производят упрощенно по каталожным данным их производительности по воздуху и холоду (детально см. практикум [6]).

Согласно СНиП 2.04.05-91 системы вентиляции и воздушного отопления рекомендуется предусматривать: 1) отдельными для каж­дой группы помещений по взрывопожарной опасности, размещенных в пределах одного пожарного отсека; 2) общими для следующих поме­щений:а ) жилых; б) общественных, административно-бытовых и про­изводственных категорий Д (в любых сочетаниях); в) производственных одной из категорий А или Б, размещенных не более чем на 3 этажах; г) производственных одной из категорий В, Г или Д и дру­гих по п.п. 4.25 данного СНиП.

1.2.3. Освещение. Через глаза человек получает около 90% всей информации. Качество ее поступления во многом зависит от освеще­ния. При неудовлетворительном освещении человек напрягает зри­тельный аппарат, что ведет к утомлению зрения и организма в це­лом. Одновременно человек теряет ориентацию среди оборудования, что повышает опасность его травмирования.

Осветительные условия определяются количественными и качест­венными характеристиками. Первыми являются световой поток (F, лм ), сила света (I, кд), освещенность (Е, лк), яркость (Lα, кд/м2) и коэффициент отражения (ρ, %), а вторые - фон, конт­раст объекта различения с фоном, видимость, показатель слепимости и коэффициент пульсации.

Освещение РМ должно быть близким по спектральному составу к солнечному свету как наиболее гигиеничному; достаточным и соответствовать СНиП II-4-79; равномерным и устойчивым (соотношение между Lα в поле зрения не более 3...5 раз); без резких теней и блеклости в поле зрения; соответствующей цветности и не являться источником дополнительных вредных и опасных факторов (по избыткам тепла, шуму, электро- и пожароопасности).

В зависимости от источника света освещение может быть естест­венным (создается солнечным диском и диффузионным светом небо­свода), искусственным (создается электролампами) и совмещенным (естественное + искусственное). По функциональному назначению освещение подразделяется на рабочее, аварийное, эвакуационное и дежурное. Рабочее освещение использует естественный и искус­ственные свет, а другие виды освещения - только искусственный свет.

Рабочее освещение обязательно во всех помещениях и на терри­ториях для нормальной работы. Аварийное освещение устраивают в помещениях и на открытых площадках для продолжения работы в про­изводствах (например, на ТЭЦ), где отключение рабочего освещения (при аварии) может вызвать взрыв, пожар, отравление или длитель­ное нарушение технологического процесса. Эвакуационное освещение предусматривают в местах, опасных для прохода людей, в основных проходах и на лестницах зданий с числом эвакуирующихся более 50 чел.

1.2.3.1. Естественное и совмещенное освещение. Естественное освещение характеризуется изменяющейся освещенностью на РМ в те­чение суток, года, которая обусловлена световым климатом. Поэто­му его нормируют не по освещенности, а по коэффициенту естест­венной освещенности (КЕО). Под ним понимают отношение естествен­ной освещенности в данной точке внутри помещения (Ев) к одно­временному значению наружной горизонтальной освещенности (Ен), создаваемой светом полностью открытого небосвода. Оно выражается формулой е = Ев *100/Ен. Значение е не зависит от времени дня и года, метеоусловий и показывает долю (в %) освещенности в помещении от одновременной горизонтальной освещенности открытого небосвода.

Естественное освещение предусматривают в помещениях с посто­янным пребыванием людей. Если оно недостаточно по нормам, его дополняют искусственным освещением. Такое освещение называют совмещенным и выражается оно также через КЕО в %, Совмещенное освещение проектируют в помещениях, в которых выполняют работы I, II и III разрядов по СНиП II-4-79; в помещениях, когда требу­ются объемно-планировочные решения, и т.д. По конструктивным особенностям естественное освещение подразделяется на боковое (через окна), верхнее (через фонари, проемы в покрытиях) и бо­ковое + верхнее.

Нормативное значение КЕО (Ен) для естественного и совме­щенного освещения производственных и других помещений устанавли­вает СНиП II-4-79 с учетом характера зрительной работы, вида ос­вещения и светового климата в районе расположения здания. Вся территория бывшего СССР разбита на пять поясов светового климата (см. карту в СНиП II-4-79). Для зданий, расположенных в 3 поясе (Смоленская, Калужская, Тверская, Московская, Владимирская, Свердловская и другие области) светового климата, значения Ен приведены в табл. I и 2 данного СНиП, а для остальных поясов значение Ен определяют (с округлением до десятых %) по формуле Ен1,2,4,5= Ен3 · m · С, где m - коэффициент светового климата, значение которого для светового пояса I равно 1,2; II - 1,1; IV - 0,9 и V - 0,8; С - коэффициент солнечности климата (от 1 до 0,65), принимается по табл. 5 СНиП II-4-79.

Для производственных помещений СНиП II-4-79 устанавливает во­семь разрядов зрительных работ: I - наивысшая точность - при наименьшем объекте различения менее 0,15 мм; II - очень высокая точность - свыше 0,15 до 0,3 мм; III - высокая точность - свыше 0,3 до 0,5 мм; IV - средняя точность - свыше 0,5 до 1 мм; V - малая точность - свыше 1 до 5 мм; VI - очень малая точность - более 5 мм; VII - работа со светящимися материалами и изделиями в горячих цехах - более 0,5 мм; VIII - общее наблюдение за ходом производственного процесса.

В помещениях с боковым освещением нормируют Емин а для поме­щений с верхним или боковым + верхним освещением - Еср в сечении характерного размера помещения. Рациональное использование естественного света зависит от чистоты окон. Поэтому указанный СНиП рекомендует осуществлять их очистку в следующие сроки: при содержании пыли, дыма и копоти свыше 5 мг/м3 в рабочей зоне (ТЭЦ, котельные, эстакады) 4 раза в год; от 1 до 5 мг/м3 (куз­нечные, сварочные и электролизные помещения) 3 раза в год; ме­нее 1 мг/м3 (инструментальные, механические и другие помещения) 2 раза в год. Для очистки стекол следует применять окномои и моющие средства типа "Сульфанол", "Прогресс", "Азолят" и т.д.

Расчет естественного освещения сводится к определению площади оконных проемов по формулам, приведенным в пособии [9] к СНиП II-4-79. На практике КЕО в любой точке помещения во многом зависит от планировки оборудования и отражающей способности внутренних поверхностей этого помещения. Планировка оборудования должна быть такой, чтобы последнее, расположенное ближе к окнам, не затемняло РМ (зоны), удаленные от окон. Поэтому оборудование необходимо размещать перпендикулярно к окну, а свет на РМ дол­жен падать с левой стороны. Все поверхности помещения и обору­дования рекомендуется окрашивать в цвета с высокой отражающей способностью.

1.2.3.2. Искусственное освещение применяется в темное время суток и в помещениях, где нет естественного освещения. По кон­структивному исполнению оно подразделяется на общее (равномер­ное или локализованное) и комбинированное (общее + местное). Од­но местное освещение в производственных помещениях не допускает­ся. Комбинированное освещение более экономично и широко исполь­зуется на производстве, где необходимо создание больших освещенностей (например, на токарных станках, слесарных тисках, щитах КИП и т.п.). Источниками искусственного света являются лампы на­каливания (ЛН) и газоразрядные лампы (ГРЛ).

ЛН - источники света теплового излучения - имеют элементарно простую схему включения, на их работе практически не сказываются условия внешней среды. Но у них очень низок кпд (всею 3%), низ­кая светоотдача (7...20 лм/Вт), неблагоприятный спектр излучения (62% инфракрасного излучения), слишком большая яркость и малый срок службы (до 1000 ч).

ГРЛ - источник "холодного" свечения, в котором свет возникает в результате электроразряда в газе, парах металоэ или в смеси газа с парами. К ним относят лампы низкого давления или люминес­центные лампы (ЛЛ) и высокого давления, или дуговые ртутные (ДРЛ), дуговые ртутные с йодидами металлов (ДРИ), натриевые (ДНаТ), ксеноновые (ДКсТ) и металлогалогенные (ДРИМГЛ) лампы. Они имеют высокую светоотдачу (40...110 лм/Вт), меньшую яркость, спектр излучения, близкий к спектру естественного света, равномерную ос­вещенность в поле зрения и большой срок службы (6...14 тыс. ч). Им присущи недостатки: несколько сложная схема включения, высо­кая чувствительность к температурным условиям, шум дросселей, пульсации светового потока, относительная длительность разгорания (около 7 мин) и повторного зажигания ДРЛ и ДРИ после осты­вания (через 10 мин). Несомненные их преимущества предопределили широкое применение ГРЛ в осветительных установках. СНиП II-4-79 допускает применять ЛН только в случае невозможности или техни­ко-экономической нецелесообразности использования ГРЛ.

В ЛЛ спектр светового потока изменяется составом люминофора. Поэтому выпускают лампы: дневного света (ЛД - голубоватый цвет свечения), дневного света с улучшенной цветопередачей (ЛДЦ - цвет свечения близок к естественному свету), белого света (ЛБ – желтоватый цвет свечения), холодно-белого света (ЛХБ), естест­венного солнечного света (ЛЕ), холодно-естественного света (ЛХЕ) и тепло-белого света (ЛТБ - розовато-белый цвет свечения). Они нормально работают при температуре ОС 18...25°С, а при 10°С и ниже зажигание не гарантируется. ЛЛ обладают достаточным "пос­лесвечением" и повторяют колебания переменного тока, что вызы­вает стробоскопический эффект ("рябит в глазах" и создается ил­люзия движения или вращения в обратную сторону или полного от­сутствия движения, вращения). Коэффициент пульсации Кп у ламп ЛБ равен 25%, а у ЛД – 40% (допустимы: Кп ≤ 10...20% по СНиП II-4-79 в зависимости от точности работ). Чтобы избавиться от пульсации и стробоскопии, применяют схему двухлампового включения по принципу "расщепления фаз", включение смежных ламп в различные фазы электросети, питание ламп током повышенной час­тоты (например, 400 Гц и выше).

Выбор искусственных источников света производят по приложе­нию 6 СНиП II-4-79 в зависимости от характера зрительной работы по цветоразличению. При этом в помещениях без или с недостаточ­ным естественным освещением применяют эритемные (ультрафиолетовые) лампы для компенсации солнечной недостаточ­ности. ЛН и ГРЛ с пускорегулирующим аппаратом заключаются в спе­циальную арматуру, предохраняющую глаза от действия ярких частей лампы, обеспечивающую требуемое распределение светового потока и предохраняющую лампу от перегревания, осевшей пыли и влаги, механических повреждений. Такая арматура с источником света сос­тавляет светильник. Он характеризуется типом оболочки и, защитным углом, а также степенью защиты от воздействия ОС по ГОСТ 14254-80 и 17677-82*.

Уровень освещенности нормируется СНиП II-4-79 раздельно для различных помещений, мест работ вне зданий и наружного освещения городов, поселков и пунктов. Для производственных помещений при этом устанавливается рабочая (ГРЛ) минимальная освещенность (Емин) в зависимости от точности зрительной работы и системы освещения. Для искусственного освещения также предусмотрено во­семь разрядов зрительной работы, но первые пять разрядов разде­лены на четыре подразряда (а, б, в, г) в зависимости от соотно­шений "контраст объекта различения с фоном - характеристика фо­на". При использовании ЛН рабочую освещенность по СНиП II-4-79 следует снижать по шкале освещенности на 1 или 2 ступени в зави­симости от системы освещения и разряда зрительных работ. Она не должна превышать 300 лк.

При аварийном освещении ЕА должна быть 5 % от рабочего общего освещения, но не менее 2 лк внутри здания и не менее 1 лк для площадок предприятия. При освещенности в здании более 30 лк (ГРЛ) и более 10 лк (ЛН) требуется обязательное обоснование ава­рийного освещения. Эвакуационное освещение должно обеспечивать Еэ на полу основных проходов (или на земле) и ступенях лестниц 0,5 лк в помещениях и 0,2 лк на открытых территориях. Для этих видов освещения следует применять только светильники с ЛН (или с ЛЛ - в помещениях с минимальной температурой воздуха не менее + 5°С и при условии питания их переменным током напряжением не ниже 90% номинального).

При светотехническом расчете (наиболее массовый инженерный расчет) производят выбор источников света, системы освещения Емин , коэффициента запаса, типов светильников и их размещение в освещаемом пространстве. Для этого применяют следующие методы: светового потока, удельной мощности и точечный (детально см. практикум [6] и пособие [9]).

В процессе эксплуатации искусственного освещения уменьшается фактическая освещенность на РМ за счет уменьшения светового по­тока ламп или их несвоевременной замены, загрязнения светильни­ков, стен и потолка помещения. Поэтому необходимо осуществлять регулярную чистку светильников в течение года: при запыленности воздуха свыше 5 мг/м3 - 18 раз; от 1 до 5 мг/м3 - 6 раз и менее 1 мг/м3 - 4 раза.

Тщательный и регулярные уход за осветительными установками обеспечивают рациональные зрительные УТ без дополнительных затрат электроэнергии. Для этого рекомендуется создавать специальные бригады или группы эксплуатации, отвечающие только за освещение.

1.3. Негативные факторы в системе "человек - среда обитания"

1.3.1. Классификация негативных факторов (НФ). В основе возникновения негативных воздействий на человека и ПС лежит неравновесное состояние материального мира и прежде всего различия в энергетических характеристиках его компонентов, в уровнях тепловой, кинетической, электромагнитной и прочих видов энергии. Кинетическая энергия ветра и водной стихии, высвобождающаяся энер­гия напряжений земной коры, термическая энергия вулканов - при­меры естественных негативных воздействий. Появление человечес­кого общества и его хозяйственной деятельности привело к формированию новых источников негативных воздействий и нового класса - антропогенных НФ. Рост масштабов экономической деятельности и совершенствование промышленного производства резко расширили пе­речень антропогенных НФ и увеличили интенсивность их воздействия. Общей главной причиной реализации антропогенных НФ с самого начала был неконтролируемый выход энергии.

Деление НФ на естественные и антропогенные - это классифика­ция факторов по происхождению. По природе воздействия их можно разделить на физические, химические и биологические. Определяю­щий признаком для первой группы является вид энергии (например, механической, тепловой или электромагнитной). К этой группе НФ относятся рассмотренные выше основные неблагоприятные характе­ристики воздушной среды и освещенности; механические факторы, включающие воздействие движущихся машин и механизмов, вибрации и ускорения; акустические факторы (инфразвук, шум и ультразвук); большой перечень электромагнитных излучений (ультрафиолетовая и инфракрасная радиация, высоко- и сверхвысокочастотные излучения, ионизирующая радиация, лазерное излучение и т.д.).

Воздействие второй группы НФ определяется химической струк­турой вещества. Эта группа НФ включает отклонения в естественном составе воздуха (слишком низкие или слишком высокие уровни парциального давления О2, высокий уровень парциального давления N2 и т.п.), а также его запылённость и загазованность. В за­висимости от токсичности (ядовитости) НФ воздушной среды делят на чрезвычайно опасные (с ПДК<0,1мг/м3), высокоопасные (с ПДК = 0,1…1),умеренно опасные (с ПДК = 1,1…10,0) и малоопасные (с ПДК > 10 мг/м3). К биологическим факторам относят прямое воздействие живых организмов: повреждения от животных, пресмыкающихся и насекомых, воздействие продуктов жизнедеятельности(например пыльцы) и биотехнологических производств. Последние, в частности, являются одним из основных источников аллергенов, т.е. веществ, вызывающих аллергические реакции и заболевания (например, бронхиальную астму или экзему).

С трудовой деятельностью человека связана особая группа психофизиологических факторов, т.е. НФ, создающих высокие уровни физических и нервно-психологических нагрузок и обусловленную ими степень тяжести и напряженности труда (ГОСТ 12.0.003-74).

По характеру воздействия различаются активные, воздействующие собственной энергией(например движущиеся машины и механизмы, разрушающиеся конструкции, термические и электрические факторы) и пассивные факторы, активизирующиеся за счёт энергии, носителем которой является сам человек (например, острые колющие и режущие предметы, неровности поверхности и т.д.). Выделяются также непосредственные и косвенные опасности. Примером первых могут быть сжатые и сжиженные газы, а вторых - коррозия сосудов под давлением, в которых эти газы находятся.

По последствиям воздействия на человека различают опасные (травмирующие) и вредные (вызывающие заболевания) факторы. От­несение ряда физических и химических НФ к вредным или опасным зависит от их количественных характеристик (интенсивности, кон­центрации, дозы и т.д.). Даже те факторы, которые в определен­ном диапазоне значений обеспечивают комфорт человеку, при дру­гих значениях становятся вредными или опасными. Например, тем­пературные условия для легкой физической работы (категория Iа), оцениваемые по индексу WBGT, в диапазоне его значений 21,0... 23,4 являются комфортными, 23,5…25,4 - допустимыми, 25,5…31,0 - вредными и более 31,0 - опасными или экстремальными (по Р 2.2.013-94).

На Западе нашла широкое применение классификация опасных фак­торов Всемирной организации здравоохранения (ВОЗ). Согласно этой классификации выделяется 4 группы факторов: опасных веществ, механических, термических и электрических опасностей. К опасным веществам относят: а) взрывчатые вещества (конденсированные взрывчатые вещества, сжатые газы, взрывоопасные парогазовые смеси, перегретые жидкости, пылевоздушные смеси и другие); б) ядовитые вещества эндо- и экзогенного происхождения (в том числе и сильно ядовитые вещества - СДЯВ); в) пожароопас­ные вещества, в том числе легко воспламеняющиеся и горючие жид­кости; г) окисляющиеся и д) агрессивные (кислоты, щелочи) ве­щества; е) источники проникающей ионизирующей радиации и т.д. К механическим опасностям относятся: а) движущееся машина, заго­товка и т.д.; б) разрушение аппаратов, механизмов, зданий и со­оружений; в) острые предметы и инструменты и т.д. К термическим опасностям относятся экстремальные (высокие и низкие) темпера­туры, а к электрическим - электроток, статические поля и элек­тромагнитные излучения.

В нашей стране разработан перечень, содержащий около 200 на­иболее опасных и вредных факторов, представленных в алфавитном порядке [10].

Пространство, в котором возможно воздействие опасного или вредного фактора, называется опасной зоной. К этим зонам относят­ся: зоны захвата машин, поверхности и выступы движущихся частей, рабочие зоны подъемно-транспортного оборудования, а также зоны вокруг разрушающихся зданий, механизмов, сосудов под давлением и т.д. Различают постоянные и временные опасные зоны, которые характеризуются геометрическими размерами, а временные - еще и вероятностью ее возникновения. Условия, в которых создается воз­можность воздействия на человека опасных факторов, определяют как опасную ситуацию. Она возникает при нахождении человека в опасной зоне в момент реализации соответствующей опасности. Для характеристики опасных ситуаций используют вероятностные показатели. Частоту или вероятность реализации опасностей и вызыва­емых ими несчастных случаев (НС) называют риском (риск аварии или отказа, риск НС и травмы). В математическом смысле риск представляет собой числовую характеристику случайной величины, используемой для описания опасности. НС возможен при двух усло­виях: нахождения человека в опасной зоне в момент реализации опасности и отсутствия у него достаточных С3.

В качестве характеристик уровня воздействия НФ используют размеры материального ущерба при его реализации, число постра­давших, трудопотери. Однако наиболее частой мерой оценка опас­ности является число погибших. В Положении о порядке расследова­ния и учета НС на производстве [11] выделяют следующие уровни воздействия: а) приводящие к трудопотерям одного пострадавшего; б) приводящие к групповым трудопотерям; в) приводящие к инва­лидности; г) вызывающие гибель одного или нескольких человек; д) вызывающие гибель 5 и более человек (в Великобритании за кри­терий катастрофы принято не явно оговоренное количество погибших в 10 чел. [12]).

Перечень НФ, их источники, особенности реализации а воздейст­вия на человека во многом зависят от конкретной среды обитания - природной или антропогенной.

1.3.2. Естественные НФ вызываются стихийными явлениями и про­цессами в воздушной, водной и субстратной средах планеты. К ним также относят факторы космического происхождения: падения круп­ных метеоритов, космическая радиация. Воздушная среда является источником ураганов, бурь, смерчей, ударов молний; водная - ис­точником наводнений и цунами. Процессы в земной коре приводят к землетрясениям и извержениям вулканов. Правда, в последнее деся­тилетие регистрируются и землетрясения, вызванные напряжениями коры в регионах с искусственными водохранилищами; аварий же на их плотинах и дамбах приводят к наводнениям, не уступающим естественным.

Воздействие естественных НФ непосредственно приводит к гибели людей и большому материальному ущербу, а в районах жилой заст­ройки и промзонах - к разрушению зданий и сооружений, высвобож­дению энергии этих зон, пожарам, взрывам и токсическим выбросам. Все это резко увеличивает масштабы бедствий, приводит к гибели десятков и сотен тысяч людей (землетрясения в Ашхабаде в 1946г., Армении в 1988г., Нефтегорске на Сахалине в 1995г.)

Пространственное распределение стихийных бедствий (СБ) под­чинено определенным закономерностям. Так, наводнения чаще всего бывают в Юго-Восточной Азии; землетрясения, цунами и извержения вулканов в РФ характерны для Дальнего Востока (Камчатки, Курил, Сахалина), нагонные наводнения - для Санкт-Петербурга; снежные бури и заносы - для степных и горных районов; оползни - для се­литебных зон на высоких берегах рек (например, в Нижнее Новго­роде).

В зависимости от продолжительности действия различают кратко­временные СБ (землетрясения, удары молний), быстро распространя­ющиеся (пожары, цунами), умеренные (весенние паводки) и "ползу­чие" (засуха). Длительным развитием отличаются экологические бедствия, вызываемые нерациональными методами ведения хозяйства и приводящие к появлению экологических беженцев и громадному материальному ущербу (например, в Сахеле и на Арале). Существен­ной особенностью СБ является отсутствиедостоверного прогноза точного времени и места их реализации.

Поражающими факторами СБ являются первичные и вторичные меха­нические воздействия (при землетрясениях), экстремальные темпе­ратур


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.028 сек.)