|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Арифметические основы ЭВМЛекция 1. Введение Арифметические и логические основы ЭВМ. Арифметические основы ЭВМ. Логические основы ЭВМ. Основные положения алгебры логики. Логические элементы. Законы и тождества алгебры логики. Электронные вычислительные машины выполняют арифметические и логические операции, при этом используется два класса переменных: числа и логические переменные. Числа несутинформацию о количественных характеристиках системы;наднимипроизводятся арифметическиедействия. Логические переменные определяют состояние системы или принадлежность её к определённому классу состояний (коммутация каналов, управление работой ЭВМ по программе ит.п.).Логические переменные могут принимать только два значения: истина и ложь. В устройствах цифровой обработки информации этим двум значениям переменных ставится в соответствие два уровня напряжения: высокий- (логическая«1»)инизкий- (логический0»). Однако в эти значения не вкладывается смысл количества. Элементы, осуществляющие простейшие операции над такими двоичными сигналами, называют логическими. На основе логических элементов разрабатываются устройства, выполняющие и арифметические, и логические операции. В настоящее время логические элементы (ЛЭ) выполняются с помощью различных технологий, которые определяют численные значения основных параметров ЛЭ и, как следствие, качественные показатели цифровых устройств обработки информации, разработанных на их основе. Поэтому в данном пособии схемотехнике и параметрам ЛЭ различных технологий уделено должное внимание. Арифметические основы ЭВМ В настоящее время в обыденной жизни для кодирования числовой информации используется десятичная система счисления с основанием 10, в которой используется 10 элементов обозначения: числа 0, 1, 2, … 8, 9. В первом (младшем) разряде указывается число единиц, во втором — десятков, в третьем — сотен и т.д.; иными словами, в каждом следующем разряде вес разрядного коэффициента увеличивается в 10 раз. В цифровых устройствах обработки информации используется двоичная система счисления с основанием 2, в которой используется два элемента обозначения: 0 и 1. Веса разрядов слева направо от младших разрядов к старшим увеличиваются в 2 раза, то есть имеют такую последовательность: 8421. В общем виде эта последовательность имеет вид: …252423222120,2-12-22-3… и используется для перевода двоичного числа в десятичное. Например, двоичное число 101011 эквивалентно десятичному числу 43: 25·1+24·0+23·1+22·0+21·1+20·1=43 В цифровых устройствах используются специальные термины для обозначения различных по объёму единиц информации: бит, байт, килобайт, мегабайт и т.д. Бит или двоичный разряд определяет значение одного какого-либо знака в двоичном числе. Например, двоичное число 101 имеет три бита или три разряда. Крайний справа разряд, с наименьшим весом, называется младшим, а крайний слева, с наибольшим весом, — старшим. Байт определяет 8-разрядную единицу информацию, 1 байт=23 бит, например, 10110011 или 01010111 и т.д., 1 кбайт = 210 байт, 1 Мбайт = 210 кбайт = 220 байт. Для представления многоразрядных чисел в двоичной системе счисления требуется большое число двоичных разрядов. Запись облегчается, если использовать шестнадцатеричную систему счисления. Основанием шестнадцатеричной системы счисления является число 16=24, в которой используется 16 элементов обозначения: числа от 0 до 9 и буквы A, B, C, D, E, F. Для перевода двоичного числа в шестнадцатеричное достаточно двоичное число разделить на четырёхбитовые группы: целую часть справа налево, дробную — слева направо от запятой. Крайние группы могут быть неполными. Каждая двоичная группа представляется соответствующим шестнадцатеричным символом (таблица 1). Например, двоичное число 0101110000111001 в шестнадцатеричной системе выражается числом 5C39. Пользователю наиболее удобна десятичная система счисления. Поэтому многие цифровые устройства, работая с двоичными числами, осуществляют приём и выдачу пользователю десятичных чисел. При этом применяется двоично-десятичный код. Двоично-десятичный код образуется заменой каждой десятичной цифры числа четырёхразрядным двоичным представлением этой цифры в двоичном коде (См. таблицу 1). Например, число 15 представляется как 00010101 BCD (BinaryCodedDecimal). При этом в каждом байте располагаются две десятичные цифры. Заметим, что двоично-десятичный код при таком преобразовании не является двоичным числом, эквивалентным десятичному числу. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |